
Papercode: Generating Paper-Based User Interfaces for
Code Review, Annotation, and Teaching

Priyan Vaithilingam
Harvard University

Cambridge, MA, USA

Julia M. Markel
UC San Diego

La Jolla, CA, USA

Philip J. Guo
UC San Diego

La Jolla, CA, USA

ABSTRACT
Paper can be a powerful and flexible user interface that lets
programmers read through large amounts of code. Using off-
the-shelf equipment, how can we generate a paper-based UI
that supports code review, annotation, and teaching? To ad-
dress this question, we ran formative studies and developed
Papercode, a system that formats source code for printing on
standard paper. Users can interact with that code on paper,
make freehand annotations, then transfer annotations back to
the computer by taking photos with a normal phone cam-
era. Papercode optimizes source code for on-paper readabil-
ity with tunable heuristics such as code-aware line wraps and
page breaks, quick references to function and global defini-
tions, moving comments and short function calls into mar-
gins, and topologically sorting functions in dependency order.

Author Keywords
paper-based interfaces, code review, teaching programming

INTRODUCTION
Paper is a flexible and powerful user interface: It is low-
cost, portable, high-resolution, spreadable, stackable, fold-
able, shareable, and enables freehand annotations [11]. Due
to these benefits, expert programmers sometimes print out
their code on paper to review and annotate it. For instance,
Joshua Bloch (a core developer of the Java platform) men-
tioned in an interview, “the most important [debugging] tools
for me are still my eyes and my brain. I print out all the code
involved and read it very carefully. [...] I usually print ev-
erything out and sit on the floor surrounded by the printout,
writing notes on it.” [10] Paper can be useful to programmers
because, although they cannot edit code on paper, in prac-
tice they spend significant amounts of time navigating, read-
ing, and understanding existing code [6, 8, 9]. But despite
these benefits of paper, there is currently no good way to ren-
der code on paper beside printing it verbatim from an IDE or
website (e.g., GitHub). Unlike textual prose, code has a com-
plex non-linear structure with functions, classes, and global
variables defined out of order and interleaved with documen-
tation comments, so just printing it verbatim is suboptimal.

Submitted as a poster to UIST 2020

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Figure 1: Papercode optimizes code for printing and allows users to scan
on-paper annotations back into the computer using a phone camera.

Using off-the-shelf equipment, how can we generate a
paper-based UI that supports code review, annotation, and
teaching? To address this question, we developed Papercode,
a system that formats source code for printing on standard-
sized paper. Users can interact with that code on paper, make
handwritten annotations, then transfer annotations back to the
computer by taking photos with a normal phone camera (Fig-
ure 1). Papercode optimizes code for on-paper readability
with tunable heuristics such as code-aware line wraps and
page breaks, quick references to function and class defini-
tions, topologically sorting functions in dependency order,
and moving comments and short function calls into margins.

RELATED WORK
Papercode lies at the intersection of two major lines of HCI
research: paper-based interfaces and code navigation tools.
Researchers have long recognized the flexibility of paper as
an information medium and built tools to augment it. One ap-
proach, taken by systems such as PADD [5], PapierCraft [7],
CoScribe [12], and ButterflyNet [14] uses digital pens to
capture handwritten annotations and gestures to synchronize
with notetaking apps. Realtalk extends these ideas to pro-
gramming by using projectors and cameras in a room-sized
setup [13]. In contrast, Papercode does not require any spe-
cial equipment; it relies only on a printer and phone camera.

Papercode was also inspired by IDE enhancements that help
programmers navigate code: e.g., Code Bubbles [1], Code
Canvas [3], and Debugger Canvas [2] break up codebases into
functions and classes then lay them out on a 2D canvas. These
systems are all computer-based interfaces; we extend some of
their ideas to paper-based UIs for code navigation.

1

10.1145/1235


FORMATIVE STUDIES: USE CASES AND DESIGN GOALS
We conducted three small formative studies to show use cases
and formulate design goals for printing code on paper.

Expert Anecdotes: The book Coders at Work featured in-
terviews with 15 well-known expert programmers [10]. 7 of
15 mentioned printing code on paper for use cases such as
debugging and code reviews: e.g., “At each meeting, some-
one’s responsible for reading their code [...] We get every-
body around the table; everybody gets a stack of paper [print-
outs]” (Crockford). Commonly-cited benefits of paper were
1) getting a holistic big-picture view away from the computer,
and 2) being able to hand-write annotations and drawings:
“Well I did, in fact, print out the code on paper. I would sit at
a desk and read it. And very often mark it up and make anno-
tations and ask myself questions [...] and tracing it” (Steele).

Online Forum Posts: We also found a StackExchange forum
thread on code printing [4] with over 75 posts/comments. Fo-
rum users mentioned additional benefits including: “You can
put more pages side-by-side on a large conference table than
on the computer screen. And you don’t get distracted by Twit-
ter or email.” But since IDEs simply print code as plain text,
some mentioned annoyances of navigating through numerous
pages: “Stapling them together doesn’t flow as well, and not
stapling results in loose sheets that get mixed up.”

Personal Teaching Experiences: To get an educator’s per-
spective, we asked the second author to reflect on her expe-
riences as an undergraduate CS peer tutor. During tutoring
sessions, she often explained the control and data flow of stu-
dents’ code by pointing to their laptop screens and verbally
describing which data values flowed where. Since it was a
best-practice to let students navigate their own code rather
than doing it for them, and many were not adept at using
IDEs, it could take a long time to jump between several layers
of function/class definitions and uses, which often spanned
multiple files. She also supplemented her explanations by
hand-drawing sketches on notebook paper, which consist of
written-out sequences of function calls along with data struc-
ture visualizations. Printing code on paper could have eased
these interactions by letting students more quickly navigate
their codebase and draw annotations of control and data flow
directly over the code instead of in a separate notebook.

The above use cases for both professional programmers and
teachers inspired a set of design goals for Papercode:

• D1: Papercode should work with standard commodity
printers and paper, and not require any custom equipment.

• D2: It should support fast on-paper navigation through a
realistically-sized codebase spanning a variety of files.

• D3: It should support freehand annotation using a regular
pen and then tie those annotations back to the codebase.

PAPERCODE SYSTEM OVERVIEW
Papercode takes a codebase from a GitHub repository and
parses it using a language-specific parser. Then it extracts the
code for each function and formats it for printing. Figure 2
shows how it applies tunable heuristics to optimize layout:

Figure 2: Example page of source code printed using Papercode.

• The right 1/3 of the page is a large sidebar reserved for
metadata and freehand annotations. Long lines of code are
automatically wrapped at code token boundaries.
• To save vertical space and focus attention on the code itself,

it extracts out short code comments and pulls them into the
right margin alongside the original code. (The user can
also hide longer block comments to save even more space.
Those are usually licensing metadata or auxiliary info.)
• To further save space, the user can selectively ignore cer-

tain files/functions/classes to not print them out.
• It statically detects function/method calls and adds a note

in the margin showing the page number where the callee
function/method is defined, to facilitate quick navigation.
• For callees that are short functions, it inlines the function

body into the right margin so that readers can read it inline.
• It inserts page breaks at function and class boundaries so

that their definitions never start in the middle of a page.
• It supports different paper and font sizes. It is up to the user

to balance readability with the amount of paper they want
to use. There is also syntax highlighting for color printers.
• It puts a QR code at the upper right corner of each page so

that annotations can be captured with a camera (see below).
• It can also print functions in approximate topological (or

reverse topological) order based on a call graph, which lets
users read top-down from callers to callees (or vice versa).

Once the stack of paper for a codebase has been printed, the
user can make annotations on paper with a normal pen and
take photos of it with a phone camera. The QR code at the
upper right links each page back to the codebase; since line
numbers are at known vertical locations, Papercode can detect
which lines of code the annotations were drawn near, so those
annotations can appear in the IDE to reference while coding.

In sum, Papercode lets users access the flexibility of paper as
a medium for reading, annotating, and teaching about code.

2



Acknowledgments: Thanks to Jonathan Edwards for feed-
back. This material is based upon work supported by the
National Science Foundation under Grant No. NSF IIS-
1845900.

REFERENCES
[1] Andrew Bragdon, Robert Zeleznik, Steven P. Reiss,

Suman Karumuri, William Cheung, Joshua Kaplan,
Christopher Coleman, Ferdi Adeputra, and Joseph J.
LaViola. 2010. Code Bubbles: A Working Set-Based
Interface for Code Understanding and Maintenance. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’10). Association
for Computing Machinery, New York, NY, USA,
2503–2512. DOI:
http://dx.doi.org/10.1145/1753326.1753706

[2] Robert DeLine, Andrew Bragdon, Kael Rowan, Jens
Jacobsen, and Steven P. Reiss. 2012. Debugger Canvas:
Industrial Experience with the Code Bubbles Paradigm.
In Proceedings of the 34th International Conference on
Software Engineering (ICSE ’12). IEEE Press,
1064–1073.

[3] Rob DeLine and Kael Rowan. 2010. Code Canvas:
Zooming towards Better Development Environments.
In Proceedings of the International Conference on
Software Engineering (New Ideas and Emerging
Results). Association for Computing Machinery, Inc.

[4] StackExchange (Software Engineering). 2011. Is it
common to print out code on paper?
https://softwareengineering.stackexchange.com/
questions/35471/
is-it-common-to-print-out-code-on-paper. (Aug.
2011). Accessed: 2020-07-20.

[5] François Guimbretière. 2003. Paper Augmented Digital
Documents. In Proceedings of the 16th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’03). Association for Computing Machinery,
New York, NY, USA, 51–60. DOI:
http://dx.doi.org/10.1145/964696.964702

[6] Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and
Htet Htet Aung. 2006. An Exploratory Study of How
Developers Seek, Relate, and Collect Relevant
Information during Software Maintenance Tasks. IEEE
Trans. Softw. Eng. 32, 12 (Dec. 2006), 971–987. DOI:
http://dx.doi.org/10.1109/TSE.2006.116

[7] Chunyuan Liao, François Guimbretière, Ken Hinckley,
and Jim Hollan. 2008. Papiercraft: A Gesture-Based
Command System for Interactive Paper. ACM Trans.
Comput.-Hum. Interact. 14, 4, Article 18 (Jan. 2008),
27 pages. DOI:
http://dx.doi.org/10.1145/1314683.1314686

[8] Roberto Minelli, Andrea Mocci, and Michele Lanza.
2015. I Know What You Did Last Summer: An
Investigation of How Developers Spend Their Time. In
Proceedings of the 2015 IEEE 23rd International
Conference on Program Comprehension (ICPC ’15).
IEEE Press, 25–35.

[9] David J. Piorkowski, Scott D. Fleming, Irwin Kwan,
Margaret M. Burnett, Christopher Scaffidi, Rachel K.E.
Bellamy, and Joshua Jordahl. 2013. The Whats and
Hows of Programmers’ Foraging Diets. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’13). Association for
Computing Machinery, New York, NY, USA,
3063–3072. DOI:
http://dx.doi.org/10.1145/2470654.2466418

[10] Peter Seibel. 2009. Coders at Work (1st ed.). Apress,
USA.

[11] Abigail J. Sellen and Richard H.R. Harper. 2003. The
Myth of the Paperless Office. MIT Press, Cambridge,
MA, USA.

[12] Jürgen Steimle, Oliver Brdiczka, and Max Muhlhauser.
2009. CoScribe: Integrating Paper and Digital
Documents for Collaborative Knowledge Work. IEEE
Trans. Learn. Technol. 2, 3 (July 2009), 174–188.
DOI:http://dx.doi.org/10.1109/TLT.2009.27

[13] Carl Tashian. 2019. At Dynamicland, The Building Is
The Computer.
https://tashian.com/articles/dynamicland/.
(Sept. 2019). Accessed: 2020-07-20.

[14] Ron Yeh, Chunyuan Liao, Scott Klemmer, François
Guimbretière, Brian Lee, Boyko Kakaradov, Jeannie
Stamberger, and Andreas Paepcke. 2006. ButterflyNet:
A Mobile Capture and Access System for Field
Biology Research. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’06). Association for Computing Machinery, New
York, NY, USA, 571–580. DOI:
http://dx.doi.org/10.1145/1124772.1124859

3

http://dx.doi.org/10.1145/1753326.1753706
https://softwareengineering.stackexchange.com/questions/35471/is-it-common-to-print-out-code-on-paper
https://softwareengineering.stackexchange.com/questions/35471/is-it-common-to-print-out-code-on-paper
https://softwareengineering.stackexchange.com/questions/35471/is-it-common-to-print-out-code-on-paper
http://dx.doi.org/10.1145/964696.964702
http://dx.doi.org/10.1109/TSE.2006.116
http://dx.doi.org/10.1145/1314683.1314686
http://dx.doi.org/10.1145/2470654.2466418
http://dx.doi.org/10.1109/TLT.2009.27
https://tashian.com/articles/dynamicland/
http://dx.doi.org/10.1145/1124772.1124859

	Introduction
	Related Work
	Formative studies: Use cases and design goals
	Papercode System Overview
	References 

