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Assembly programming is challenging, even for experts. Program synthesis, as an alternative to manual implementation, has the
potential to enable both expert and non-expert users to generate programs in an automated fashion. However, current tools and
techniques are unable to synthesize assembly programs larger than a few instructions. We present Assuage: ASsembly Synthesis
Using A Guided Exploration, which is a parallel interactive assembly synthesizer that engages the user as an active collaborator,
enabling synthesis to scale beyond current limits. Using Assuage, users can provide two types of semantically meaningful hints
that expedite synthesis and allow for exploration of multiple possibilities simultaneously. Assuage exposes information about the
underlying synthesis process using multiple representations to help users guide synthesis. We conducted a within-subjects study with
twenty-one participants working on assembly programming tasks. With Assuage, participants with a wide range of expertise were
able to achieve significantly higher success rates, perceived less subjective workload, and preferred the usefulness and usability of
Assuage over a state of the art synthesis tool.
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1 INTRODUCTION

Although most software is written in higher level languages, there is still a large body of mission critical software
that must be written in assembly, and assembly language, by comparison, is difficult and tedious to write. People
write assembly code in many situations: when developing low level, machine-dependent parts of an operating system,
when working on resource-constrained embedded platforms, when programming low-level device drivers, and while
optimzing code that requires specific instructions that the compiler cannot produce. However, most programmers are
neither professional assembly programmers nor familiar with the myriad assembly languages emerging with the end
of Moore’s law [23]. Most programmers never write assembly programs. It takes time and effort for people to learn
different assembly languages and then to debug programs written in them. Assuage is designed for users who are
familiar with the high-level concepts of assembly languages, but do not know the syntax for a given assembly language
or the details of what each instruction does.
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Assembly program synthesis has been proposed as an alternative to manual implementation [20, 28, 48]. The existing
assembly synthesis systems [25, 28] leverage CounterExample Guided Inductive Synthesis (CEGIS) [46], which is a
technique that iteratively generates candidate programs, i.e., sequences of assembly instructions, and then checks
whether they satisfy a given specification. If the candidate violates the specification, CEGIS provides a counterexample
demonstrating the violation. However, the major barrier to the adoption of assembly synthesis is the limitation of its
scalability to unrestricted real-world problems; specifically, the search space of possible programs is combinatorial in
the number of machine states and exponential in the number of instructions. This limits the feasibility of assembly
synthesis to sequences of only a few instructions [2, 48, 49]. Current strategies for exploiting parallelism to speed up
the search in this domain are limited.

Interactive synthesis techniques have been shown to improve synthesis scalability in other programming contexts [2,
10, 13, 21, 32, 41, 44, 54, 55]. Though this is a promising direction, there are twomajor concerns when applying interactive
synthesis to assembly programming: First, assembly programs are hard to understand and tedious to write, possibly
impairing users’ ability to provide guidance, especially when they are unfamiliar with the specific assembly language
being used. Second, for users to help guide the synthesis process, they need to understand details about the synthesis
process as it unfolds [54]; however, relative to other synthesis methods, such as exhaustive enumeration, CEGIS has a
complex structure, with candidates and counterexamples as intermediates. Moreover, for assembly synthesis, these
intermediates contain sophisticated syntax and semantic information that dramatically increases complexity.

To address these concerns, we introduce Assuage (Figure 1), a novel interaction technique for CEGIS-based assembly
synthesis that (1) allows users to provide multiple types of guidance during synthesis, (2) provides users with different
representations of synthesizer feedback, and (3) enables parallel synthesis to decrease the penalty for users whose
guidance is, at times, counterproductive. Assuage supports two types of interventions, i.e., user guidance: (1) constraints
enable users to explicitly constrain the instructions and elements of the machine model that programs reference, and
(2) decompositions, where the user can opt to accept a system-proposed decomposition of the original specification
into a set of smaller specifications that might be easier to solve. To help users gain more insight and provide better
guidance, Assuage displays the on-going synthesis process with representations of synthesizer feedback, including
a synthesis candidate ranking list, frequency analysis of different instructions explored during synthesis, debug
information, and satisfaction analysis about the correct and incorrect parts of a candidate’s behavior. Finally, in contrast
to traditional synthesis, Assuage supports parallel synthesis, which spawns new synthesis instances whenever users
apply interventions, while allowing previous instances to continue executing. All these instances run simultaneously
and users can choose to apply interventions to any of them. This allows users to try interventions that may not work,
without penalty. This design encourages exploration in the presence of uncertainty.

Though parallel synthesis should help users explore more interventions, we were concerned that the complexity of
tracking multiple instances would overwhelm users and negatively effect usability. To better understand the effectiveness
of Assuage’s features, we conducted a within-subjects user study with 21 participants with various levels of expertise.
When interacting with all of Assuage’s features (including parallel synthesis), participants achieved a significantly
higher success rate than when using a state-of-the-art non-parallel synthesis toolchain that provided only instruction
constraints and synthesizer feedback. Furthermore, when using Assuage, participants found parallel synthesis intuitive
and easy to use; many participants reported that parallel synthesis, combined with multiple types of intervention support,
reduced the subjective workload of giving interventions and madeAssuagemore approachable. By removing the penalty
of adding potentially incorrect interventions, we enabled the users to freely explore multiple ideas simultaneously.

In summary, this paper contributes the following:
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• An interactive assembly synthesizer, Assuage, that allows the user and the synthesizer to collaboratively search
a larger space of assembly programs

• A parallel synthesis approach that reduces the penalty of adding incorrect interventions and allows users to
explore multiple ideas simultaneously

• A within-subjects study showing the usefulness and usability of Assuage compared to a interactive synthesis
tool that implements the current state of the art.

2 RELATEDWORK

Program synthesis is used to automatically generate target programs that satisfy a given specification [3, 6, 12, 34, 40].
There are two major categories of program synthesis: those with complete specifications and those without.

Synthesizing with partial specifications. Partial specification approaches include programming-by-example
(PBE) and programming-by-demonstration (PBD) systems, which allow users to demonstrate desired program behavior
with specifications consisting of input-output examples or desirable trace demonstrations [8, 37]. Gulwani et al. [17]
show that PBE is an effective paradigm for industrial applications, such as string transformations [15], table transforma-
tions [16] and data extraction [31]. One of the drawbacks of PBE systems is the incompleteness of their specifications.
These systems can provide a synthesized result quickly, but the result might exhibit incorrect behavior due to a case
not covered by the incomplete specification [9]. Recent work [45] reveals a counter-intuitive disconnect between the
efficiency of PBE systems and users’ perceived utility of them.

Synthesizing with complete specifications. This area of program synthesis began in 2006 with the introduction
of Sketch [47], in which a programmer provides an incomplete program with holes and synthesizes code to complete
the holes. Following this work, syntax-guided synthesis generalizes the partial program with incomplete details yielding
a syntactic template [1], and counterexample guided inductive synthesis (CEGIS) [46] generalizes this for infinite state
programs. CEGIS uses an iterative process to perform inductive generalization for all possible inputs. The approach in
this paper uses CEGIS, where specifications consist of two logical expressions: a precondition and a postcondition. The
precondition is a predicate that holds for the initial state (before the assembly code executes), while the postcondition
must hold for the final state (after the assembly code executes).

Compared to PBE systems, a CEGIS specification is complete and precise. However, the search space is large, and
these techniques do not scale well for unrestricted real-world problems [9]. While Bornholt and Torlak [5] developed
symbolic profiling techniques to identify symbolic execution performance bottlenecks, in synthesis, SMT solving is the
performance bottleneck, not symbolic execution. Synthesizing assembly code is significantly harder than synthesizing
high-level languages. Assembly programs manipulate untyped memory and global states, leading to enormous search
spaces that are exponential in program length and combinatorial in the number of instructions, registers, memory
locations, and immediate values [28]. State-of-the-art assembly synthesis tools, such as McSynth, can generate sequences
of only about three to five instructions (i.e., 3–5-instruction programs) within a reasonable time period [28, 48, 50],
while many assembly code blocks needed for essential operating system services require hundreds or thousands of lines
of code (e.g., more than 500 lines for OS/161 [26], a simplified teaching operating system). Srinivasan et al. explored
optimizations for synthesizing machine code from semantic specifications with a divide-and-conquer scheme [49, 50],
but scalability is still limited. Prior work [24] requires other special tools to handle large cases; Assuage is an alternative,
which can synthesize large programs using human guidance.
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Trust and performance when interacting with synthesizers. In addition to scalability challenges, modern user
studies on program synthesis systems reveal several major usability issues and challenges [9, 18, 33, 39]. General
black-box program synthesis leads to a lack of confidence and trust in synthesized programs due to the opaqueness
of the synthesis process, even though this approach avoids overloading users with details [39, 54]. The ambiguity of
incomplete user-given specifications, such as examples, also misleads the synthesizer to generate plausible, but incorrect
programs [33]. Since writing the specification in a general purpose specification language is sometimes harder than
writing a program, the assistant approach with different levels of programming automation has been explored [43].

To the best of our knowledge, interactive CEGIS-based synthesis has not been investigated in the literature. Prior
work has shown that for interactive PBE/PBD systems, annotating input-output examples [55] or synthesized program
components [41] with include and exclude sets performed well, and participants achieved better performance when
they had access to more actionable information about the on-going enumerative synthesis process [54]. Similarly, in
the domain of CEGIS-based synthesis, Assuage both supports constraints that allow users to define include/exclude
sets on both instructions and portions of the machine state used in a program and reveals actionable information about
the underlying parallel CEGIS synthesis processes.

Techniques to clarify user intent. Many methods have been proposed to clarify user intent during program
synthesis when the user-provided specification is incomplete. Most PBD and PBE systems allow users to actively
provide additional examples to disambiguate their intent. There are several approaches that automate this process
by generating examples that distinguish multiple plausible candidate programs [30, 35, 51]. REGAE [55] extends this
work by supplementing user-provided examples with many additional strategically generated inputs that show the
outputs of user-selected synthesized program(s) on the input space nearby user-provided examples as well as possible
unanticipated corner cases far away. By looking at the outputs of synthesized programs on these many additional
inputs, users can clarify their intent by selectively pulling input-output pairs into the set of user-provided examples
describing their intent, preserving or changing their desired output for that input in the process. Unlike PBE/PBD,
CEGIS-based assembly synthesis requires a complete specification of what the user wants in terms of pre-conditions
and post-conditions that must be satisfied; therefore, instead of asking the user to provide additional examples or
demonstrations to clarify what they want, the user provides additional constraints to reduce the synthesis search space.

Techniques to communicate synthesis progress. There have been many attempts to present synthesized pro-
gram candidates to the user after the synthesizer finishes its given synthesis task. Topaz [38] generalized the cursor
movement capabilities from text editors to a graphical domain for graphical program synthesis, while Rousillon [7]
demonstrates synthesized scripts with a graphical interface showing hierarchical information for web scraping. Flash-
Prog [35] introduced program navigation that allows user to navigate between all programs synthesized by the underlying
PBE engine and pick the desired one. Zhang et al. [54] trace and visualize various views of all the programs enumerated
during the synthesis process as the synthesis process is running, before the synthesis task is complete. For example, they
show a line chart of how many examples each candidate satisfies and a tree view representing the space of programs
explored so far. Assuage extends this work to CEGIS-based assembly synthesis. Analogous to Zhang et al.’s line chart,
Assuage has a chart of how many test cases satisfy the specification after executing candidates from each of multiple
parallel synthesis instances. Analogous to their tree view of enumerated programs, Assuage shows the top candidates
generated by the CEGIS synthesizer along with their execution trace, which can help the user recognize additional,
potentially helpful interventions to add.
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Parallel synthesis. Jeon et al. [29] propose a synthesis technique to combine symbolic search and explicit search
by partially concretizing a randomly chosen subset of unknowns. These random trials of the algorithm can be run
in parallel—solving problems that were otherwise intractable. Instead of exploiting an inherently parallel algorithm,
Assuage enables users to explore multiple possibilities under various interventions in parallel.

Mixed-initiative systems. Horovitz [27] introduced the principles of mixed-initiative user interfaces, which seek
synergies between intelligent services and users. With mixed-initiative interaction, the intelligent services and users
collaborate efficiently to achieve the user’s goal.Assuage leverages this interaction approach using the best of human and
computer abilities enabling both the computer and the human to take initiative and make decisions, i.e., the synthesizer
does the computational work of producing candidate programs and automatically suggesting some interventions, while
the human applies interventions that reflect higher-level insight into the final program structure and content. Assuage
supports both multiple types of interventions to let users guide and expedite synthesis and multiple visualizations of
synthesizer feedback about the proposed candidates and the counterexamples generated during synthesis.

3 PRELIMINARIES

We adopt a CEGIS-based assembly language synthesis toolchain from existing work [25, 28]. The goal of general
assembly synthesis is to automatically produce assembly code from two inputs: a machine model and a specification.
The machine model is the machine description, which provides an executable model of an instruction set architecture.
It declares machine states, such as registers and memory locations, and defines the semantics of assembly instructions.
The specification describes the intended functionality of the target program with pre- and postconditions. We refer the
reader to prior work [25] for a detailed description of the synthesis algorithm.

The synthesizer uses a CEGIS technique, which iteratively produces assembly programs as candidates that are tested
against an accumulated set of counterexamples (i.e., a set of initial machine states that satisfy the precondition and
violate the postcondition). The conventional CEGIS-based synthesizer starts with 0-instruction program synthesis
(called stage 0) and proceeds to stage 𝑛 + 1 when synthesis at stage 𝑛 fails, iterating until synthesis succeeds. In each
stage, the synthesizer iteratively suggests a candidate program that might satisfy the given specification, i.e., satisfies
the specification in the presence of the current counterexample set, provides additional counterexamples that make
the candidate program violate the specification (i.e., the postcondition), and adds them to the accumulated set. This
procedure continues until the synthesizer fails to find either an appropriate candidate or more counterexamples.

Since we assume that our target user is familiar only with the high-level concepts of assembly language but not the
exact syntax or behavior details, we categorize assembly instructions into type groups that make sense to users, shown
in Table 1. These type groups can, however, overlap. For example, an instruction that performs subtraction, e.g., a sub
instruction, is both a general arithmetic instruction with type ARITH and an addition operation with type ADD. When
specifying type information, users can both use coarse-grained categories (left column in Table 1) and more fine-grained
categories (right columns in Table 1). Type groups provide high-level primitives that abstract away low-level syntax
and semantics for assembly languages. These type groups cover all instructions declared in the machine model.

4 USER SCENARIO

The following scenario illustrates how an engineer, Alex, can use Assuage (Figure 1) to synthesize ARMv7 code that
implements some exception handling code in the Barrelfish operating system [4]. Specifically, Alex wants to write
assembly code that satisfies the following specification, expressed in pseudocode (shown in the left sidebar in Figure 1):
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Coarse-grained types Fine-grained types
ARITH

General Arithmetic
ADD

Addition
CMP

Comparison
LOGIC

General Logical
BIT

Bitwise Logic
SHIFT

Shift/Rotate
MEMOP

Memory Handling
LOAD

Load from
STORE

Store into
DATAOP

Data Transfer
MOV

Data Move
JMP

General Branch
COPROC

Coprocessor Handling
Table 1. Assembly Instruction Types. We categorize into coarse-grained and fine-grained types. Users can refer to both in Assuage.

Fig. 1. Assuage Interface. The side bar on the left shows the task specification, the middle panel contains visualizations of the

synthesis process, and the right panel presents the user with interventions that can be used to guide synthesis. In this snapshot of

Assuage, there are five instances running in parallel (described in Section 4); the currently selected instance is using a decomposition

intervention in which the first part of the decomposed specification (part A) has succeeded, as indicated by the green highlighting.

1. Mem: memory region with 4 slots ([Mem, 0], [Mem, 4], [Mem, 8], [Mem, 12])

2. cond: boolean = *R3 < load_from([Mem, 8])

3. precondition: *R2 == [Mem, 0]

4. postcondition: if cond then *R1 == 0x1 else *R1 == 0x0

Line 1 indicates that the code can use four locations (called slots) in memory Mem. The precondition (Line 3) requires
that before the code implementing this specification executes, register R2 must contain a pointer to the specific memory
location ([Mem, 0]), while the postcondition (Line 4) requires that when the code finishes executing, register R1 contains
0x1 if the variable cond, which is defined in Line 2, is true or 0x0 if cond is false. The variable cond (Line 2) is a
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Fig. 2. Pre-intervention synthesizer feedback. (A) displays the highest score among all generated candidates, (B) shows a list of

the candidates with the top five highest scores, (C) indicates how frequently each instruction type appears across all candidates

synthesized so far. Alex has selected the third candidate in B, which looks promising and (D) indicates which parts of that selected

specification have been satisfied (blue) and which have not (red), and provides the values of multiple machine states at different

program points.

boolean condition that stores the comparison result between the contents of a register (R3) and a value stored in a
particular location in memory ([Mem, 8]). Alex has some basic understanding of MIPS assembly language but has
never written ARM assembly programs, so she decides to use an assembly synthesizer instead.

Alex starts the synthesizer. In real time, Assuage generates candidate implementations of the specification and
displays information on each candidate generated (shown in the middle in Figure 1). Using the specification, Assuage
generates 20 test cases consisting of initial states that satisfy the precondition. For each candidate, it presents the user
with a score, indicating the number of test cases for which the candidate satisfies the postcondition. In other words, the
higher the score a candidate achieves, the closer it is to a correct implementation.

The synthesizer first starts trying single-instruction candidate programs. It quickly determines that no one-instruction
program can satisfy the specification, so it moves on to two-instruction programs. Within about a minute, it starts
generating candidates consisting of three instructions, after determining that there is no two-instruction solution.
As this synthesis process proceeds, Alex watches the live-updated score chart (Figure 2A), which shows the highest
score that any candidate has achieved so far, and examines the top candidates table (Figure 2B), which shows the five
candidates with the highest scores.

While impressed that the best candidate so far is a two-instruction program, Alex suspects the synthesizer has wasted
time evaluating poor candidates. Therefore, she decides to inspect patterns across high-scoring candidates for inspiration.
To do so, Alex clicks the occurrence table (Figure 2C), which shows the frequency of each assembly instruction type
that appeared in previous candidates and the average scores of those candidates. Although the synthesizer struggled
with low-scoring candidates, Alex finds it helpful to see what kinds of instruction types produced consistently better
average scores. She notices that LOAD and MOV have occurred frequently and that candidates with those instructions
have higher scores than others. She also finds in the specification that the variable cond (Line 2) uses the load_from
function to read a value from memory. These observations give Alex some clues, e.g., LOAD should be present in the
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Fig. 3. Parallel synthesis and user interventions in Assuage. To guide synthesis, Alex can either (A) constrain programs with instruction-

level details, i.e., directly mark partial programs as desired or undesired in the final results, (B) eliminate irrelevant and unused

registers and memory locations, or (C) ask the synthesizer to decompose the specification into a set of smaller, easier-to-solve

sub-problems. With each of these user actions, new synthesis instance are initiated, running in parallel. Assuage is running with five

synthesis instances with different interventions, shown by the five lines in D and the five nodes in the tree view E. Solid lines in D

represent the synthesis instance without decomposition, while dashed lines represent multiple sub-instances under decomposition.

program. She then clicks on promising candidates from the candidate table (Figure 2B) to get a detailed execution trace
and the specification analysis for each candidate. Using the execution trace, she knows which parts of the specification
were satisfied or unsatisfied by each candidate (Figure 2D). She notices that whenever there is a LOAD, part of the
specification is satisfied.

Base on these observations, she decides that the program must read from memory before it does anything else.
Though she is not quite sure whether MOV is necessary for the program, she decides to explore two ideas in parallel:
one where MOV is included in the program and one where MOV is excluded from the program. Assuage allows the user
to explore multiple ideas in parallel instead of committing to just one. Alex adds two interventions: first, she selects
the radio button for the first instruction and clicks the “Include” button. In a pop-up window for “Include”, she selects
LOAD from a list of instruction types (shown in Table 1) to indicate that LOAD should be the first instruction of the
program. She also selects the whole program radio button and marks MOV as included, indicating that MOV should appear
somewhere in the program (Figure 3A); this kicks off a new synthesis instance running in parallel with the first, i.e., the
original instance. Second, she selects the original synthesis instance and then adds a different intervention: she again
marks that LOAD should be the first instruction in the program and instead clicks on “Exclude” and selects MOV from the
pop-up window to indicate that MOV should not be used anywhere in the program (not pictured), kicking off a third
synthesis instance running in parallel. This means that Assuage will not use MOV instructions in any future candidates
for this third instance. In summary, when Alex adds each intervention, Assuage creates a new synthesis instance using
the union of the currently selected instance’s interventions and the newly added one. The live-updated score chart
(originally shown in Figure 2A) now shows multiple lines, each representing one of the parallel instances labeled with
the user-added interventions that caused their creation (gray, orange, and gold-colored lines in Figure 3D).
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So far, Alex has only considered restricting the types of instructions that Assuage will use, but she is eager to
try more types of interventions. With three synthesis instances running in parallel, Alex notices that some arbitrary
registers (such as R5 and R6) appear in candidates but not in the specification; she thinks these other registers might be
irrelevant for this code sequence. To guide Assuage towards her intuition, Figure 3B shows how she removes all the
registers that do not appear in the specification, except for some flag registers that she thinks might affect control flow.
Alex applies this intervention on top of one of her previous interventions (the one with LOAD and MOV both marked
for inclusion), because after inspecting the progress of different synthesis instances by clicking on different lines in
Figure 3D, she thinks that this synthesis instance looks most promising. At this point, all four instances are shown with
solid lines in Figure 3D with different color annotations (gray, orange, gold, and green lines).

With Alex’s guidance, the synthesizer starts to synthesize programs of four instructions. While waiting, Alex notices
that the postcondition has an if-then-else structure, suggesting the possibility of breaking this synthesis problem into
small pieces to be synthesized separately. Assuage proposes a possible decomposition (Figure 3C). Alex confirms that it
seems reasonable and decides to give it a try. She adds this decomposition as a new intervention, shown as the blue
dashed line in Figure 3D. At this point, five synthesis instances are running in parallel as shown in Figure 3E, and Alex
can sit back and continue to watch the best scores associated with each instance rise or inspect any individual instance
to better understand why its best candidates are not yet full solutions. Figure 1 shows a screenshot of Assuage with all
five interventions applied by Alex.

Before any of the other instances are able to reach a full solution, the blue dashed line representing the instance
with the decomposition intervention climbs up to a full score once for each smaller synthesis challenge that makes up
the full decomposition. That means that all components of the decomposition have been synthesized completely, and
together they satisfy the original specification. Assuage returns this sequence of assembly instructions to Alex for final
inspection. Alex is surprised that this interactive synthesizer Assuage took about 15 minutes to produce an assembly
program that satisfied the given specification, because without her guidance, a traditional synthesizer takes hours to
finish.

5 DESIGN AND IMPLEMENTATION

Developing a collaborative system that seamlessly combines human intuition and expertise with automated CEGIS-based
assembly synthesis requires an interaction model: we first describe how users can intervene to guide synthesis, then
how Assuage gives feedback to users for better understanding, and finally how Assuage exposes parallelism.

5.1 User Interventions

Assuage provides two types of interventions that allow users to provide information to the synthesizer: Constraints
and Decomposition. Constraints include instruction constraints, which allow users to constrain specific instructions, and
location constraints, which allow users to eliminate irrelevant registers and memory locations to expedite synthesis.
Decomposition breaks the specification into smaller problems. Assuage automatically provides suggestions for location
constraints and decomposition based on the specification; if the user likes these suggestions, she can create a new
instance including the new intervention, either by adding it to the set of interventions present in an already running
instance or by creating an instance with only the suggested interventions.

Constraints. Assuage allows users to introduce constraints on instructions for the target program and the machine
model that are used for assembly synthesis.

9



UIST ’21, October 10–14, 2021, Virtual Event, USA Jingmei Hu, Priyan Vaithilingam, Stephen Chong, Margo Seltzer, and Elena L. Glassman

Instruction Constraints enable users to place constraints on instruction choice and ordering as shown in Figure 3A.
We refer to both coarse-grained and fine-grained instruction types in Table 1 as 𝑡1, 𝑡2, . . . , 𝑡𝑛 , and their corresponding
grouped instruction sets as𝐺𝑡1 ,𝐺𝑡2 , . . . ,𝐺𝑡𝑛 for convenience. Given a candidate assembly program 𝑃 with 𝑥 instructions,
i.e., 𝑓 𝑖𝑛𝑎𝑙 (𝑃) = 𝐼𝑥 (𝐼𝑥−1 (. . . (𝑖𝑛𝑖𝑡 (𝑃)) . . . )), where 𝑖𝑛𝑖𝑡 (𝑃) and 𝑓 𝑖𝑛𝑎𝑙 (𝑃) represent the initial and final machine states,
respectively, and 𝐼𝑖 represents the 𝑖-th instruction in the program 𝑃 , we introduce the following constraints, which
impose restrictions on either parts of the program or the entire program behavior.

• Include (𝐺𝑡𝑖 ) where 𝑖 ≤ 𝑛: will hold for programs 𝑃 ′ with 𝑦 (𝑦 ≥ 𝑥 ) instructions where ∃𝑘 (𝑘 ≤ 𝑦), 𝐼𝑘 ∈ 𝐺𝑡𝑖 .
• IncludeLoc (𝐺𝑡𝑖 , 𝑗) where 𝑖 ≤ 𝑛 ∧ 𝑗 ≤ 𝑥 : will hold for programs 𝑃 ′ with 𝑦 (𝑦 ≥ 𝑥 ) instructions where 𝐼 𝑗 ∈ 𝐺𝑡𝑖 .
• Exclude (𝐺𝑡𝑖 ) where 𝑖 ≤ 𝑛: will hold for programs 𝑃 ′ with 𝑦 (𝑦 ≥ 𝑥 ) instructions where ∀𝑘 (𝑘 ≤ 𝑦), 𝐼𝑘 ∉ 𝐺𝑡𝑖 .
• ExcludeLoc (𝐺𝑡𝑖 , 𝑗) where 𝑖 ≤ 𝑛 ∧ 𝑗 ≤ 𝑥 : will hold for programs 𝑃 ′ with 𝑦 (𝑦 ≥ 𝑥 ) instructions where 𝐼 𝑗 ∉ 𝐺𝑡𝑖 .
• Seq (𝐺𝑡𝑖 , . . . ,𝐺𝑡 𝑗 ) where (𝑖 ≤ 𝑛) ∧ ( 𝑗 ≤ 𝑛) and Length(𝐺𝑡𝑖 , . . . ,𝐺𝑡 𝑗 ) = 𝑙 : will hold for programs 𝑃 ′ with 𝑦 (𝑦 ≥ 𝑙 )
instructions where ∃𝑘 (𝑘 ≤ 𝑦 − 𝑙), 𝐼𝑘 ∈ 𝐺𝑡𝑖 ∧ · · · ∧ 𝐼𝑘+𝑙 ∈ 𝐺𝑡 𝑗 .

• Extend (𝑦) where (𝑦 > 𝑥 ): will extend the program length to 𝑦 instructions.

Inclusion, i.e., Include and IncludeLoc, requires that one or one specific group of instructions appears in the target
program. In Section 4, through interacting with the Assuage interface, Alex implicitly added IncludeLoc (LOAD, 1) to
force the first instruction to be a LOAD-like instruction. Exclusion, i.e., Exclude and ExcludeLoc, rules out a specific group
of instructions for the whole program or for some specific location in the program. Likewise, in Section 4, Alex implicitly
added Exclude (MOV) to rule out any data movement instructions. Seq defines a partially ordered sequence that must
appear in the target program. For example, Alex could click the “Seq” button in Figure 3A and select LOAD and MOV in
order, to implicitly add Seq (LOAD, MOV), which requires that a partial sequence containing LOAD and MOV must appear,
consecutively and in order, in the synthesized program. Extend directly extends the program to the user-specified
length.

Location Constraints enable users to eliminate use of certain registers or memory locations in the synthesized program,
as shown in Figure 3B. Machine models contain more information than is strictly necessary to facilitate synthesis. The
complete machine model contains the descriptions of all registers, memory locations and instructions for the entire
system. Removing registers and memory locations that are not needed to produce a correct implementation for a specific
specification will speed up synthesis and reduce a user’s cognitive load. Assuage collects all related registers and
memory locations that a specification might access (explicitly or implicitly), compares them to the complete machine
model, and recommends a shrinkable location set to the user. This shrinkable location set includes both registers and
memory entries that contain arbitrary values without specification restrictions. Removing those arbitrary location
elements should not affect program correctness. For example, a specification might access only a subset of the slots
inside a memory region. Eliminating the irrelevant and unused head and tail slots in memory regions can reduce the
search space and expedite synthesis. While Assuage analyzes the specification and proposes a reduced machine model,
we rely on user guidance to apply the reduction. While these reductions frequently work, they are not guaranteed to
be correct when, for example, an implementation requires temporary storage (e.g., producing a swap function). One
could imagine letting Assuage automatically create new instances for these suggested location reductions, but we leave
investigation of this approach for future work.

Decomposition. Since the search space and synthesis time grows exponentially in the number of instructions, our
intuition was that breaking the problem down and solving smaller problems would improve synthesis performance
considerably [42]. As it is overwhelming to consider the specification as a whole, we distinguish three statement
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structures that might comprise the postcondition: if-then-else (ITE), conjunction (AND), and disjunction (OR). Given a
specification with precondition Pre and postcondition Post with one of these structures, Assuage proposes one of the
following decompositions:

• Post = if A then B else C: The ITE-like specification can be decomposed into three blocks as shown in Figure 3C. Each
block has its own specification, referred to as sub-specification. These three blocks share the same precondition
Pre. The first block contains two exit points, which allow it to branch into different following blocks based on the
condition A. The second and third blocks synthesize for B and C, respectively, and they both exit to the ultimate
exit point of the entire program. Concatenating the three blocks produces three smaller synthesis problems that
satisfy the specification Post.

• Post = A and B: The AND-like specification can be decomposed into two blocks. Unlike the ITE format, these two
blocks are coherent and no control flow is necessary. The first block achieves the partial postcondition A, while
the second block takes the synthesized program for A as a prefix and synthesizes the program for the entire Post
(A and B).

• Post = A or B: The OR-like specification cannot simply be separated into A and B, but we can rearrange Post into
the ITE format, if A then exit else B, and decompose it into two blocks. Similar to the ITE format, the first block
contains two exit points, one to the ultimate exit point of the entire program and the other to the entry of the
second block, based on the condition A. The second block achieves the partial postcondition B. Concatenating
the two blocks produces two smaller synthesis instances the satisfy the original specification Post.

These proposed decompositions may be less efficient or produce an even more difficult synthesis problem. We rely
on user guidance to determine of the proposed decomposition is a good avenue of exploration. As suggested in the
discussion of machine model reduction, this is another area where letting Assuage automatically generate instances
using the proposed decompositions could prove fruitful.

5.2 Synthesizer Feedback

Empowering users to intelligently apply all these interventions requires that the synthesizer provides information
that helps the user understand how synthesis is progressing. Assuage presents the following dynamically updated
information during the synthesis process:

Candidate Scoring. To visualize approximately how close various candidates are to satisfying the specification,
Assuage generates M arbitrary initial states satisfying the precondition as test cases and evaluates the candidate
programs P against them on every synthesis iteration. If the corresponding final states of N of theM initial states verify
successfully after executing a program P, i.e., they satisfy the postcondition, Assuage grades the candidate P with a
score 𝑁 /𝑀 (Score (P) = 𝑁 /𝑀). This scoring mechanism introduces a trade-off between the time overhead needed to run
all the test cases and the user’s perception of a candidate’s quality. We discuss the selection of𝑀 = 20 in Section 6.

During synthesis, the score chart (Figure 2A) gives user real time updates about the synthesis process. The x-axis of
the score chart shows the total number of candidates that have been tried by the synthesizer across all parallel synthesis
instances; the y-axis shows the highest score among the generated candidates. This view allows a user to monitor
synthesis progress over time. For example, if one line suddenly increases dramatically, it indicates that synthesis has
produced some better candidates, and the user might want to inspect the corresponding candidates to understand
what is preventing them from fully satisfying the specification; the right information should help them translate their
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observations into helpful interventions. Assuage also displays a ranking list of the candidates with the top five highest
scores for a given synthesis instance (Figure 2B), so the user can determine the cause of a given instance’s higher scores.

Type Frequency. To provide a more holistic view at the instruction level, the frequency table (Figure 2C) shows, for
a selected instance, how frequently each assembly instruction type appears across all candidates synthesized so far.
For each individual synthesis instance, Assuage shows the type frequency for the whole program and for different
instruction locations (e.g., “1st Insn” and “2nd Insn” in Figure 2C) and the average score of candidates that include each
instruction type. For example, if the frequency of LOAD is extremely high and its average score looks good, it suggests
that the final program should contain a LOAD. By default, Assuage shows coarse-grained type information (left column
in Table 1) and when the user clicks on a specific type, it shows the frequency of its fine-grained types (right columns
in Table 1). Compared to the score information, type frequency indicates a more concrete view of the target program
and provides a sense of the connection between instructions and their behaviors against the specification. However, it
also requires a deeper understanding of assembly language. Our assumption is that instructions that are frequently
chosen by the synthesizer or get high scores on average have a higher probability of occurring in the target sequence.
Type frequency information with candidate scores gives users intuition about the potential target sequence and the
possible constraints to apply.

Specification Analysis. To let users constrain programs (as mentioned in Section 5.1), Assuage applies each
candidate P and its corresponding counterexamples CE (a set of initial machine states) to the postcondition expression
and creates an execution trace by concretizing all immediate states after each instruction with P and CE. This is the
debug information shown to the users, i.e., execution values at every program point and a specification analysis in
which Assuage highlights specification-satisfying and specification non-satisfying parts of P’s behavior during each
iteration, i.e., the parts that lead to postcondition violations with different colors (blue and red highlights in Figure 2D).
Highlighting the unsatisfied parts helps a user make further suggestions. For every specification non-satisfying part,
Assuage also explicitly presents the way it was generated from the initial machine states (.init postfix notations
in Figure 2), which helps the user understand why that part violates the postcondition . The specification analysis
and execution trace provide a detailed view, which requires a good understanding of assembly language concepts to
appreciate and exploit. It helps users confirm their guess about some specific candidates. Experts will be more likely
able to benefit from this particular feature than non experts.

5.3 Parallel Synthesis

Assuage provides an integrated representation of the interventions that users have performed so far during synthesis.
When the user adds an intervention, Assuage creates a new synthesis instance using the union of the currently selected
instance’s interventions and the new one. The tree view (Figure 3E) shows all existing instances, where every child
instance contains all the interventions of its parent. Assuage also plots multiple lines in the score chart, as shown in
Figure 3D, where each line represents the progress of one synthesis instance. Assuage highlights the currently selected
instance with a thicker border in Figure 3E and thicker lines in Figure 3D.

Compared with traditional synthesis, Assuage’s support for parallelism allows users to explore multiple possible
interventions simultaneously. By spawning new synthesis instances when users add interventions, while continuing to
run all existing instances, parallel synthesis reduces the penalty of making mistakes.
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Synthesizer Feedback User Interventions
Candidate
Scoring

Type
Frequency

Specification
Analysis

Instruction
Constraints

Location
Constraints Decomposition Parallel

Synthesis
Control ✓ ✓ ✓ ✓
Experiment
(Assuage) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2. Controlled user study design of the control and experimental synthesizers.

6 USER STUDY

To validate that assembly synthesis can be scaled with user interventions and to evaluate the usefulness and effectiveness
of Assuage, we conducted a within-subject study with 21 participants. As a baseline, we implemented a CEGIS-based
synthesizer that represents the state of the art in traditional synthesis interface affordances; Table 2 illustrates the
comparison between the control and experimental synthesizers’ capabilities. Instead of using a traditional CEGIS-
based synthesizer, we compared against a baseline condition where participants completed tasks using a traditional
synthesizer that provided feedback on the synthesis process and allowed users to apply instruction constraints only.
The experimental synthesizer, i.e., Assuage, had all the features described in Section 5 enabled. We ask the following
research questions:

• RQ1: Compared to the prior state of the art, can Assuage help a user more efficiently propose interventions and

more quickly arrive at a specification-satisfying program?

• RQ2: How does Assuage affect users’ subjective workload and experience during assembly synthesis?

• RQ3: How do users respond to Assuage holistically?

• RQ4: How do users respond to each feature of Assuage, including parallel synthesis?

• RQ5: What obstacles do users encounter when using Assuage for interactive (assembly) synthesis?

6.1 Participants and Settings

We recruited 21 participants (3 female and 18 male). Seventeen were recruited through mailing lists of several research
groups at two R1 universities, and four were reached through professional networks. Of these four, three participants
knew at least one author, but were not involved in the project. Participants received a $25 Amazon gift card as
compensation for their time. Nine participants were graduate students, five were undergraduate students, and the other
six were professional developers. Participants had a diverse range of prior experience with assembly language. Ten
participants said they knew assembly basics but only used it several times, seven said they were familiar with assembly
languages and have used them many times, and four said they were experts in assembly and remembered most of the
syntax and semantic details. The majority of participants (15/21) said, when writing assembly programs, they often had
to search online for the specific instruction set architecture. All non-expert participants considered writing in assembly
more difficult than writing in other familiar languages. We conducted all studies using a Ubuntu 18.04 LTS computer
with 32G of memory.

6.2 Tasks

To design realistic programming tasks for assembly programs, we selected two tasks derived from the Barrelfish
operating system [4] and the book Hacker’s Delight [52], which is commonly referred to as the “Bible of bit twiddling
hacks” [19]. The specifications of these two tasks in pseudo code and their solutions in ARM assembly are listed below,
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with the specification on the left and the assembly sequence on the right. Note that these tasks might have multiple
correct solutions. In our study, the specifications are written by a domain expert and given to users, who are not
allowed to alter them. We restrict the synthesizers to searching for assembly programs of up to 4 instructions for one
specification.

Task 1. This task is the same as the example mentioned in Section 4. Without any interventions, the CEGIS-based
synthesis for this task finishes in about 6.1 hours on the same machine used in the user study. Using Assuage, an
omniscient user, who knows which interventions should be applied, i.e., the correct decomposition and constraints, can
successfully synthesize a 12-instruction programwith control flow (4 instructions for each decomposed sub-specification
and 3 decomposed sub-specifications in total) in about 5 minutes.

Mem: memory region with 4 slots ldr r1, [r2, #8]

([Mem, 0], [Mem, 4], [Mem, 8], [Mem, 12]) cmp r3, r1

cond: boolean = *R3 < load_from([Mem, 8]) movlo r1, #1

precondition: *R2 == [Mem, 0] movhs r1, #0

postcondition: if cond then *R1 == 0x1 else *R1 == 0x0

Task 2. This task is derived from two benchmark examples: turning on the rightmost 0-bit and turning off the
rightmost 1-bit in a 32-bit vector. Without any interventions, the CEGIS-based synthesis for this task finishes in about
1.2 hours. The omniscient user using Assuage can successfully synthesize a 4-instruction program (2 decomposed
sub-specifications) in about 3 minutes.

val: 32 bit = *R1 add r2, r1, #1

precondition: true and r2, r1, r2

postcondition: ( *R2 == (val + 0x1) & val ) sub r3, r1, #1

&& ( *R3 == (val - 0x1) | val ) orr r3, r1, r3

6.3 Methodology

We conducted a 75-min study session with each participant and, with permission, recorded the session. In each session,
with a think-aloud protocol, participants completed one of the two tasks using the synthesizer in the control condition
and the other task using the experimental synthesizer (i.e., Assuage). To mitigate any learning effects, both the order of
tasks and of interactive synthesizers were counterbalanced across participants through random assignment. Before each
task, participants were given a tutorial video of the features of the synthesizer they would have access to during that
task. They were then given 20 minutes to finish the assigned task. The task was considered failed if participants did not
guide the synthesizer to a specification-satisfying assembly sequence within that time limit. After each task, participants
filled out a survey about their experience using the assigned synthesizer. The survey included questions shown in
Table 3, i.e., five NASA Task Load Index questions [22] to rate their perceived subjective workload during the task and
two questions about the usefulness of the assigned synthesizer. After finishing both tasks, participants answered a
final survey to directly compare their experiences using each synthesizer. We open-coded participants’ responses with
themes and used them to shed light on the underlying reasons for the quantitative results in the following section.
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Q1. How mentally demanding was this task with this tool? (1—Very Low, 7—Very High)
Q2. How hurried or rushed were you during this task? (1—Very Low, 7—Very High)
Q3. How successful would you rate yourself in accomplishing this task? (1—Perfect, 7—Failure)
Q4. How hard did you have to work to accomplish your level of performance? (1—Very Low, 7—Very High)
Q5. How insecure, discouraged, irritated, stressed, and annoyed were you? (1—Very Low, 7—Very High)
Q6: How helpful was this tool for writing assembly programs? (1—Not Helpful, 7—Very Helpful)*
Q7: How likely to use this tool in the future of possible assembly programming? (1—Not Likely, 7—Very Likely)*

Table 3. Participants rated on a 7-point scale. Q1-Q5: rating the subjective workload under different aspects: mental demand, hurry,

performance, effort, and frustration; Q6-Q7: rating the usefulness of the assigned synthesizer. Asterisks designate the statements that

are reverse scored.

Fig. 4. Subjective workload and usability measurement. The an-

swers for helpfulness and usability are reverse scored. Users per-

ceived less mental demand, felt less time pressure, spent less effort,

and gave themselves better performance ratings with Assuage.

Users considered Assuage more helpful and usable.

Fig. 5. The preference of different expertise levels. Users with dif-

ferent level of expertise preferred Assuage for assembly synthesis.

7 USER STUDY RESULTS

7.1 User Performance

In the experiment condition (i.e., using Assuage), 20 of 21 participants successfully guided the synthesizer to a correct
assembly solution, while only 8 participants finished the task in the control condition. Fisher’s exact test [11] on the
performance comparison shows that the difference is statistically significant (𝑝 < 0.001). To compute average task
completion time, we assigned the time-out limit of 20 minutes to those users who were unable to complete a task. The
average task completion time with Assuage was 9.28 minutes, while the average task completion time in the control
condition was 17.57 minutes. Welch’s t-test [53] shows the mean difference of completion time is statistically significant
as well (𝑝 < 0.001). As for different tasks, all eleven participants using Assuage for Task 1 finished successfully (8.31
minutes on average) and nine out of ten participants using Assuage for Task 2 finished successfully (10.25 minutes on
average). By contrast, in the control condition, five out of ten participants finished Task 1 (17.24 minutes on average)
and three out of eleven participants finished Task 2 (17.89 minutes on average).

Qualitative data speaks to four main reasons why participants performed significantly better with Assuage (RQ1).
First, Assuage afforded participants more choices to prune the search space during synthesis, while participants in
the control interface had very few options other than constraining instruction usage. P18 complained, “it felt like the
number and precision of constraints required to get an answer in a reasonable time were barely sufficient.” We also noticed
that participants were more inclined to wait for some active synthesis progress and analyze both the specification and
candidates to add the corresponding constraints. Assuage provides more information to help them analyze and apply
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Fig. 6. Which interface did you prefer to use? Fig. 7. Which interface was more useful?

interventions. Second, parallel synthesis allowed participants to more freely apply interventions. P9 wrote, “the fact
that you lost previous programs when adding new constraints meant it was difficult to decide whether to add more.” P2
explained, “it’s really nice when you have these different kinds of experiments that you can do in parallel and you’re not

forced to directly have the perfect constraints from the beginning.” Third, parallel synthesis created high fault tolerance.
P1 mentioned, “if you ever make a mistake, then it won’t have a hard reboot for the whole tool.” P12 also complained about
the control interface, “if I want to change my mind about something, I would have to basically stop all the progress. That

was very punishing and a huge burden.” Fourth, participants gained more engagement during synthesis and showed
more trust in the synthesized result. P19 explained, “the fact that there was more information there certainly kept me

engaged in the tool.” P12 also said, “I like the tree view and the concurrent synthesis. It felt like more stuff was happening. It

was kind of reassuring.”

Figure 4 shows participants’ responses to the questions in Table 3 (RQ2). With Assuage, participants perceived
less mental demand, felt less time pressure, spent less effort, and gave themselves better performance ratings. Welch’s
t-test on the comparisons in Figure 4 shows that the mean differences of mental demand, performance and effort are
statistically significant (𝑝 = 0.045, 𝑝 = 0.039, 𝑝 = 0.008). However, there is no significant improvement in participants’
response to perception of hurry and frustration (𝑝 = 0.062, 𝑝 = 0.224). The mean differences of helpfulness and usability
are also statistically significant (𝑝 = 0.016, 𝑝 = 0.034), which indicates the perception of usability preference is consistent
across participants.

Adding up t-tests across all our experiments, we ran 8 statistical tests (including five NASA-TLX questions, two
helpfulness and usability measurements, and completion time), giving us a Bonferroni-corrected threshold of 0.00625 for
an initial 𝛼 of 0.05. Note that those eight tests are dependent, which shows the Bonferroni correction is conservative in
our study setting. After correction, the mean difference of completion time between two synthesizers is still statistically
significant and the mean difference of effort participants spent is marginally significant. Yet there is no significant
difference for other questions after correction.

7.2 User Preference

Figures 6 and 7 show the overall preference and usefulness ratings (RQ3). Sixteen of 21 participants preferred or strongly
preferred synthesis with Assuage, and 19 of 21 participants thought Assuage more useful. We also categorize different
kinds of users with assembly expertise and investigate their performances and preferences in the user study. Figure 5
shows that the strong preference using Assuage did not vary much across participants with different degrees of
expertise.

In the survey for each task, we asked participants to rate the usefulness and subjective workload of each synthesis
feature available to them during the task (RQ4). Figure 8 shows the comparison of each type of synthesizer feedback
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Fig. 8. How useful vs. complicated was each synthesizer feedback

information?

Fig. 9. How useful was each intervention and parallel synthesis

in Assuage?

information that was present in both conditions. The candidate scoring was most preferred; participants’ comments
indicate that it provides a holistic view of the back-end synthesis. For example, P10 described that “it provides a nice
visualization of how the synthesis is doing.” Specification analysis was considered slightly more helpful than the type
frequency, while their complexities were rated similarly. Unsurprisingly, participants with higher self-reported levels
of expertise rated themselves higher in understanding what the candidates were doing and how close they were to
satisfying the specification.

Figure 9 indicates the perceived usefulness of each intervention type as well as parallel synthesis in Assuage. The
majority of participants (15/20) expressed a strong preference towards both location constraints and decomposition
features. Participants hesitated to try decomposition at the beginning as P2 explained, “the decomposition interface is

more intimidating than the other interfaces since there is more going on; the other things are super easy and clear about

what’s happening.” As for parallel synthesis, all but one participant found parallelism useful and thought that it provided
more possibilities to explore. We will discuss more qualitative observations in Section 7.3.

7.3 Qualitative Observations: Obstacles and Lessons

Having Parallel instances requires less activation energy to add interventions and encourages simultane-
ous exploration. P15 expressed the common sentiment well: “I was able to put up new possibilities, but I didn’t have to

commit all or nothing to them. The other ones would still work and [Assuage] allows me to explore the space of things that I

could do.” P2 also explained, “it’s really nice when you have these different kinds of experiments that you can do in parallel

and you’re not forced to directly have the perfect constraints from the beginning.” “The fact that you don’t have to restart

but just keep intervening in the meantime both saves time and also saves mental energy,” P7 exclaimed. Though we were
wary of revealing the underlying parallel synthesis process and exposing users to the associated additional complexity,
users loved leveraging parallel synthesis and were able to wield it more effectively to reach their goals compared to
the non-parallel (control) condition. Twelve out of 21 participants had to restart the synthesis process in the control
condition due to incorrect interventions; some of them even restarted the process four times in a span of 20 minutes.
Assuage reduced the penalty of adding incorrect interventions, so users were less hesitant to add them. As a result,
users explored multiple ideas simultaneously. Several participants expressed that the thought process was different with
parallel synthesis: P8 said, “[Assuage] was much more open to experimenting, [control interface] was very streamlined and

it had a single thought process.” P6 also explained, “In [Assuage], you’re able to quickly try a lot of different things at the

same time, while I think [control interface] forces you to slow down a lot and think carefully about what constraints you
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would [want to add], so you want to be sure that you’re not adding constraints that could be wrong or not optimal, because

you have to restart all over again.”

Involvement increases trust. Participants trust the synthesizer’s result when they are involvedmore in the synthesis
process. P4 said, “I’m involved enough in the process that I trust the results. I can see the intermediate steps, I can look at

the programs, and I can help it along, so I feel like given seeing so much of what’s going on makes me trust the tool more."

Nine participants reported appreciation for being involved in the synthesis process. P12 said “I like the tree view and

the concurrent synthesis. It felt like more stuff was happening. It was kind of reassuring.” In contrast, for some elements
that were “too automatic,” users expressed concern. P7 expressed his concerns specifically about decomposition: “I also
wonder how much we can trust the automatic decomposition like if there could be any errors because that’s automatic, so I’m

less likely to fully rely on it.”. On the other hand, participants also did not like too much involvement. P13 complained,
"[control interface] is pretty easy to use, but I don’t think it is really helpful to fully synthesize instructions automatically, it

involves a lot of user interactions."

Idle time increases doubts in interventions (RQ5). P12, P13, P16, and P21 restarted the synthesis process in the
control condition after few minutes of idling, even though the set of constraints provided by them were correct! The
think-aloud strategy revealed that they started questioning their constraints while sitting idle as the synthesis process
progressed, eventually resulting in their decision to restart synthesis with different constraints. P16 explained, “The
score started to go down when I added [Exclude Coproc] constraint, so I may have to restart the process” after idling for a
few minutes, even though the constraint she added and the intuition behind it were right. This did not happen when
participants were using Assuage.

Participants concern about solution quality (RQ5). Expert users frequently expressed concern about solution
quality. Three participants (2 experts, 1 intermediate user) reported that there is a trade-off between finding a solution
quickly and synthesizing optimal solutions. For example, using decomposition in Assuage, they were able to produce
correct solutions efficiently, but the solutions were different than what they would have written manually. P11 explained,
“this actually generated a worse solution using jump. The optimal solution will not use jump, since ARM has conditional

instructions.” Experts frequently optimize for some metric: e.g., fewest lines of code, most performant, or most easily
understood by a person, while the synthesizer does not.

On the other side, by adding instruction constraints, P18 observed that at one point, they were “now just guiding the

synthesizer to generate programs that I would write myself given this specification; this prevented the synthesizer from

generating interesting solution.” Some participants were interested in obtaining eccentric solutions, like obscure bit
manipulation programs for a given specification. By adding constraints they sometimes prevented the synthesizer from
generating such solutions.

Expectation violations were not rare (RQ5). There were a few instances of expectation violation when the partic-
ipant expected the synthesizer to “understand” the specification better. P5 was confused when they remarked, “why is

the synthesizer exploring conditional instructions [when] there [are] no conditional elements in the specification?” Some
participants also expected additional “intelligence” from the synthesizer such as knowing when to use conditional
instructions, when to move data, and what registers to use.

More information increases learning curve (RQ5). Several participants explained that it was hard to inspect all
the information provided within a limited time. Three participants (P4, P11, P14) explicitly mentioned they would
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perform better after getting more familiar with the interface (both control and Assuage), showing that there was a
steep learning curve for assembly synthesis.

Participants expressed the need for more granular constraints (RQ5). Two experts (P5, P15), as well as two
intermediate users (P2, P11) and four novices (P6, P7, P10, P12), expressed a preference for being able to express
constraints at a finer granularity, such as directly assigning some particular instructions or registers in the target sequence
instead of only manipulating with high-level type abstractions. One possible explanation is that with synthesizer
feedback, participants gained more insight about the synthesis process, which allowed them to provide more detailed
guidance to help the synthesizer make progress. However, we are worried that enabling finer-grained interventions
could increase the complexity of the interface, thereby imposing more subjective workload on users.

8 DISCUSSION AND FUTUREWORK

While significant effort has been devoted to optimizing synthesis algorithms, there are still limits to what can be
accomplished without human intervention. This within-subjects study of Assuage, a novel interactive synthesis tool,
demonstrates how much more the human and the synthesizer were able to accomplish together with sufficient interface
design.

We are well aware that, compared to traditional interactive synthesis, Assuage’s parallel support reveals more
code-rich information and synthesis process details to users, increasing complexity and potentially burdening users
mentally. Surprisingly, when using parallel synthesis, participants felt less mental demand overall. One explanation
is that although Assuage showed more information and had a more complex UI, users could gain more information
about the synthesis process, making it easier for them to give effective feedback. This also supports the fact that
participants requested support for more specific constraints. Moreover, participants typically guided the synthesis with
a trial-and-error procedure, which is more demanding when the cost of errors is high. Since the parent instance with
no intervention is always running, participants can easily roll back and apply new interventions directly to the parent
instance, letting the current instance fail if the interventions are counterproductive. Having multiple parallel instances
at the same time also prevents long stretches of idle time, which introduced uncertainty in users’ interventions, as
mentioned in Section 7.3.

Expectation violations were not rare in our user study; most of them were confused about the capabilities and
the scope of the synthesizer. Grimes et al. [14] show that expectation violations lead to mistrust and distrust in the
system. In the future, we plan to investigate ways to establish appropriate trust by improving the communication of the
synthesizer’s capabilities to users.

Myers and McDaniel [36] point out that one major obstacle while using PBE/PBD systems was the lack of confidence
and trust in synthesized programs, since users were not able to inspect the synthesis process or understand the
synthesized programs. When using Assuage, especially with parallel instances, users are more involved in the synthesis
process, which increased their trust in the results. However, users also did not prefer too much involvement. Balancing
between the complexity and the usability of the interface remains an important avenue of investigation, to identify
“sweet spots” where (1) users are involved enough to trust the outcome but not so involved that they feel the system is
not helping them at all, and (2) without being overwhelmed by too much information, users have enough information
to take informed actions with confidence, or at least without fear of the consequences of messing up.

While experts who are already capable of producing correct, highly-optimized assembly code may not be inclined to
adopt a synthesizer, synthesis is beneficial to less expert programmers or those unfamiliar with a required assembly
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language. The combination of synthesis and Assuage can augment or replace the assembly code composition process,
so developers can focus on other aspects of their system. It is a happy side effect if a user’s interaction with Assuage
teaches them something about writing assembly programs, much like Googling for Stack Overflow answers to a
programming question sometimes teaches us new knowledge but usually just helps us get a job done.

Overall, Assuage is an instantiation of mixed-initiative interactive synthesis, a promising class of interactive
synthesizers that may generalize to additional complex, unrestricted, real-world programming challenges beyond
assembly programming.

9 CONCLUSION

This paper presents a novel interactive assembly synthesis tool, Assuage, that communicates the progress explored
by the synthesizer to users, so users can operate on generated candidate programs, intervene from different aspects,
explore various possibilities in parallel, and provide more valuable guidance to the synthesizer. It allows the user
and the synthesizer to work collaboratively towards generating a program that satisfies a complete specification of
what the program should do. We evaluated its usefulness and usability in a within-subjects lab study with twenty-one
participants and showed that, compared to prior state of the art interactive synthesis affordances, the availability of
multiple types of interventions and parallel synthesis processes enabled more users, regardless of their level of expertise,
to complete realistic assembly programming tasks.
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