

CodeTalk: Improving Programming Environment
Accessibility for Visually Impaired Developers

Venkatesh Potluri

Microsoft Research India

Bangalore, India

t-vepot@microsoft.com

Priyan Vaithilingam

Microsoft Research India

Bangalore, India

t-prvai@microsoft.com

Suresh Iyengar

Microsoft Research India

Bangalore, India

supartha@microsoft.com

Y Vidya

Vision Empower Trust

Bangalore, India

vidhya@visionempowertrust.in

Manohar Swaminathan

Microsoft Research India

Bangalore, India

swmanoh@microsoft.com

Gopal Srinivasa

Microsoft Research India

Bangalore, India

gopalsr@microsoft.com

ABSTRACT

In recent times, programming environments like Visual

Studio are widely used to enhance programmer productivity.

However, inadequate accessibility prevents Visually

Impaired (VI) developers from taking full advantage of these

environments. In this paper, we focus on the accessibility

challenges faced by the VI developers in using Graphical

User Interface (GUI) based programming environments.

Based on a survey of VI developers and based on two of the

authors’ personal experiences, we categorize the

accessibility difficulties into Discoverability, Glanceability,

Navigability, and Alertability. We propose solutions to some

of these challenges and implement these in CodeTalk, a

plugin for Visual Studio. We show how CodeTalk improves

developer experience and share promising early feedback

from VI developers who used our plugin.

Author Keywords

Accessibility; Programming Environments; Visually

Impaired; Audio Debugging

ACM Classification Keywords

H.5.2. Information interfaces and presentation: User

Interfaces

1 From here on, we use IDEs interchangeably with GUI based

IDEs

INTRODUCTION
Software development is one of the fastest growing fields

[10]. However, people with visual impairments are not very

well represented in the field of computer science and

software development: we are unaware of any formal study

that confirms this. However, we consider the surprise with

which the fact of blind programmers is received (see for

example the comments in [15]) as an empirical confirmation.

The percentage of developers who have self-reported as

being blind in the 2017 Stack Overflow survey is about 1%

which is much more than the percentage of people with

visual impairments in the general population [11]. We

believe that the 1% reflects that blind developers are happy

with the Stack Overflow question and answer website

because it is accessible and consequently use it in higher

numbers. According to the US National Bureau of Labor

statistics [21] only about 2% of workers in the computing and

mathematical professions have a disability compared to the

percentage of people with disabilities in the general

population of the US which is about 19% according to the

US Census Bureau. There are several reasons for this under-

representation, and in this paper, we address one of them,

namely the poor accessibility of developer tools.

People with visual impairments, use Assistive Technology

(AT) like screen readers, screen magnifiers, and braille

displays to access computers. They have also been using the

same to write computer programs. In recent times, GUI

based Integrated Development Environments (IDEs) have

become more widely used [11]. These modern IDEs aid

program comprehension and development by providing

features like syntax highlighting, variable watch windows

and ability to execute code both forward and backward [13]

enabling developers to be more productive and efficient.

Though screen readers provide basic accessibility to IDEs1,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

CHI 2018, April 21–26, 2018, Montreal, QC, Canada

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5620-6/18/04…$15.00
https://doi.org/10.1145/3173574.3174192

mailto:t-vepot@microsoft.com
mailto:t-prvai@microsoft.com
mailto:supartha@microsoft.com
mailto:vidhya@visionempowertrust.in
mailto:swmanoh@microsoft.com
mailto:gopalsr@microsoft.com
https://doi.org/10.1145/3173574.3174192

many features that IDEs indispensable to sighted developers

remain inaccessible to developers using screen readers.

In this paper, we make the following contributions towards

making programming environments more accessible to VI

developers.

• We present a classification of accessibility issues in four

headings: discoverability, glanceability, navigability,

and alertability and provide illustrative examples of

each kind. This classification was arrived at by

combining the subjective experience of two of the

authors with the results of a user survey on IDE

accessibility.

• We propose solutions to address a subset of the

identified issues and implement these solutions as

CodeTalk, a plugin for Visual Studio. Unlike related

work on accessibility of IDEs which address specific

activities, we address accessibility issues across the

entire spectrum of activities around software

development from comprehending code, editing,

debugging, and working with teams on large codebases.

• We present feedback that validates our approach by an

exploratory user study with six VI developers using

CodeTalk.

The paper is organized as follows: Section 2 describes the

motivation for this work and summarizes related work.

Section 3 presents a broad classification of accessibility

issues in IDEs. In Section 4, we introduce our approaches to

solve these issues and discuss details about CodeTalk, our

Visual Studio plugin. In Section 5, we discuss an exploratory

user study performed to get some initial user feedback on our

approaches. Section 6 and Section 7 present the key

conclusions and highlight several directions for future

research.

MOTIVATION AND RELATED WORK

The major motivating factors for this research are the

personal experiences of two of the authors A and B. Author

A is a novice programmer who primarily used a command

line interface and a text editor to program. A’s attempt to

move to an IDE like Visual Studio was unsuccessful since

the accessibility issues were found to be too daunting without

continuous help from a sighted person. Author B has been

programming using a screen reader and B’s experiences with

IDEs involved significant effort in tackling inaccessibility.

The author was able to cope by using text-based tools for

academic work and part-time projects. However, moving to

a large organization as part of a product team required that B

use an IDE used by the other team members to work

efficiently. At this point, the author realized why sighted

developers were able to work at a much faster pace. They

were able to read code much faster than the screen reader

user, quickly comprehend the structure of huge code bases,

be informed about errors without explicit actions and move

to any part of the code by pointing and clicking. Motivated

by these experiences, we surveyed earlier research efforts

that address accessibility issues in programming

environments.

IDE accessibility for developers with visual impairments is

still a new research area. There is very little exploration that

has been done to improve the development and programming

experience for VI developers. That said, there has been inter-

est in both academia and industry to improve the

accessibility of developer tools. IDEs like Eclipse [6],

Apple’s XCode [7] and Microsoft’s Visual Studio [4] have

made continuous improvements in accessibility support for

screen reader users. However, this accessibility support is

quite limited to having all buttons and UI elements spoken in

some cases. There have also been attempts by researchers to

improve the accessibility of developer tools. Emacspeak [14]

is an early effort to improve developer tools accessibility.

More recently, Baker et al., [2] have addressed the

difficulties faced by blind programmers while reading code.

They describe StructJumper, an Eclipse plugin that displays

an accessible tree-view of code structure with respect to the

current line. This effort attempts to help VI developers get

complete context with respect to a specific line of code. The

plugin focuses on reading code effectively. Smith et al. [22]

explain the problem of navigating hierarchical tree views in

detail, and, propose requirements to make tree views more

usable. [22] complements our work on glanceability and

navigability in CodeTalk. The key difference is that

CodeTalk lays down a framework to address a broad

spectrum of challenges faced by VI developers using IDEs

while [22] does an in-depth investigation on nonvisual

navigation of hierarchical data.

Both speech and non-speech audio have been explored to

enable VI developers to program. Sodbeans [19] and WAD

[18] discuss approaches to use audio for debugging code.

The Sodbeans plugin uses speech-based cues to enable VI

developers to debug. WAD emphasizes on the developers’

ability to comprehend the execution flow of the code.

[16] explores the use of auditory cues (Spearcons) in reading

source code. The researchers synthesized source code with

different audio cues like speech, tones, and white noise,

using NVDA’s speech output and Audacity. They used

combinations of these audio cues to represent the code file.

The participants were asked to comprehend code using these

audio files. This effort demonstrated that relying solely on

screen-reading is not sufficient for VI developers to

comprehend code.

[8] uses 3D printed models for VIPs to explore program

output. Students wrote programs to generate tactile versions

of the data to explore program output. Efforts like [9] and

[12] focus on teaching programming to blind students. As

seen above, all the related research has focused on enabling

VIPs to do specific tasks while programming. There is no

work that addresses accessibility issues that arise across the

complete program development cycle.

We do not address the larger challenge of building tools and

languages that facilitate the learning of computer

programming. However, we point to some interesting efforts

in this direction: Quorum [20] started out as a language that

is easily accessible to screen readers but has since evolved to

a much more general effort on evidence-based language

design. The APL [17] is another effort to introduce

programming to students with visual impairments. In this

paper we focus on enhancing accessibility of IDEs to VIPs

who have learnt the basics of programming and are currently

users of IDEs.

To go beyond the specific experiences of the two authors

mentioned and to understand the spectrum of accessibility

issues that arise during the complete programming cycle, we

conducted a user survey which we discuss in the next section.

Preliminary Survey

We conducted a preliminary survey with an objective to

collect opinions from VI developers on IDE accessibility,

with a specific focus on Microsoft Visual Studio. The survey

was hosted online, and we made sure all parts of the survey

were accessible to screen reader users. On completion of the

survey, participants interested in giving more information

could opt-in to participate in additional interviews by

conveying their interest over email. Four out of the 20

participants of the survey participated in further detailed

interviews. Details of the survey, including the questions,

participants’ demographic information and programming

experience levels, etc., can be found in [1]. The learnings

from the survey have been summarized in the next

subsection.

Learnings from the Survey

The major observation we made when we collated the survey

results and the interview responses, was that accessibility

issues were present across the entire spectrum of software

development. A sample of the responses to “list top 5

accessibility challenges” illustrates this very well:

• “watch windows are hard to use -specially the quick

watch”

• “Solution Explorer hangs on very large solutions when

attempting to navigate within”,

• “Sometimes controls don’t have labels and report their

class name”

• “access to breakpoint status while debugging”

• “There is no alternate way to get to things if you don’t

know one of the thousands of shortcut commands”

• “difficulty in moving from error screen to the editor

where program is present (Control + tab) doesn’t work”

• “Access to variable type and other info (usually

accessed by hovering the mouse over the variable

name)”

These responses were from VI developers with experience

ranging from a year to more than 25 years. The issues people

2 Watch window is used to evaluate variables and

expressions during debugging.

face range from simple ones like “Difficult to determine

when code is folded up (hidden) and must be expanded” to

that of an advanced user’s “That comparison tool is 100%

inaccessible with screen readers so I have to configure my

own code review tool in visual studio”

We then stepped back a bit to find if there is some structure

to the numerous accessibility issues which will help us

devise a solution process to handle them effectively. The

result of this effort is the classification of accessibility

challenges that we describe in the next section.

CLASSIFICATION OF ACCESSIBILITY CHALLENGES IN
IDES

Based on the data from the accessibility survey, experience

of the visually impaired authors, as well as related work on

IDE accessibility, we classify accessibility challenges into

four broad categories and give some example scenarios for

each. We use examples from Visual Studio.

1. Discoverability: This is the ability with which a user can

find features of the system to increase proficiency over

time. Sighted users have many visual clues that indicate

new features that could be useful for a given context, but

VI developers need to depend on others to tell them

about such features. Discoverability is an issue for

sighted users as well but is exacerbated for VI

developers. For instance, the author B was not aware of

the variable watch window2 and used console messages

to find the variable values until pointed out by a sighted

team member. The following are some examples of

discoverability issues:

• Existing features: Many features of the IDEs are

overtly visible in the UI but are hidden inside

multiple levels of navigational hierarchy for screen

reader users.

• New and modified features: With every new version

of the IDE, new features get added and existing

features are modified. Many of these changes are

visually represented, and there is no structured

approach for VI developers to be informed of the

same. This becomes more evident when IDEs do a

complete UI over haul, changing the UI hierarchy

and arrangement.

2. Glanceability: Visual Studio and most IDEs by

definition, use the large real estate provided by high

resolution monitors to present many aspects of the

program development process in one screen. Their

success in improving developer productivity depends

primarily on the ability of the developer to glance at

various aspects of the development process presented to

them at any given time. For sighted developers,

glanceability is innate to the medium of information

access, vision. The IDEs leverage the high bandwidth

nature of visual input and provide features that enable

sighted developers to make sense of information by

quickly glancing at the screen and the IDE’s windows.

Visual input, being a more active way of acquiring

information gives an opportunity to unobtrusively

provide information to the IDE’s users without

interrupting their current task. Unfortunately, these

features are not available to the VI developers, and they

often must consume information linearly. Following are

some example situations:

• Quick overview of the code structure: Unlike

sighted users, who can get the overview of the code

structure by quickly scrolling up and down a page,

the VI developer are forced to go through the code

line by line.

• Getting the context of the given line: There are

situations when the VI developer lands in an

unknown line of code due to breakpoints or

exceptions, or simply because the developer was

distracted. On the other hand, based on the line

number and the vertical slider bar's position, a

sighted user has a notion of the size of the program

file and the relative location of the cursor with

respect to the beginning and the end of the file.

• Indentation level: Indentation levels in whitespace

dependent programming languages like Python, are

easy to perceive for sighted users unlike VI

developers, who are forced to count the number of

whitespaces for every line.

• At any given point, sighted developers can look at

multiple pieces of information (the console log

window, stack traces, the actual code and a lot more

information as per the developer’s preference). VI

developers using screen readers have to get this

information by explicitly changing focus on to each

window in sequence.

3. Navigability: An added advantage for sighted

developers is the ability to quickly navigate through

code using scroll, point and click. Screen reader users

are limited to the search functionality and few other

navigation features provided by the IDEs. This also

extends to navigating between multiple panes within the

IDE. Following are some example scenarios:

• Skipping over large comments: Sighted developers

can skip over large code comments like

documentation and licenses quickly as compared to

screen reader users. It is cumbersome for VI

developers to navigate to the end of these

comments.

• Navigating through large blocks of code: Sighted

developers can scroll, point and click to navigate

through blocks of code like if-else block, try-catch

block. However, navigating through code within a

block is not so intuitive and easy for VI developers

using screen readers.

• Navigating across various windows: Sighted

developers can easily obtain information from

multiple windows like the watch window, call stack

window, and the debug window instantaneously

without having to switch between them. On the

other hand, VI developers must go through

numerous keystrokes to switch between and access

the information presented in these windows.

Figure 1. Red squiggle shown for error in Visual Studio

4. Alertability: IDEs convey a significant amount of real

time information through a completely visual interface

[2]. Such information alerts the developer to issues that

need immediate attention or actions that are in progress.

The following examples enumerate few scenarios where

VI developers do not get access to the real time

information provided by the IDE:

• Debugging Information: Information related to

debugging like values of variables and breakpoint

information are not available to a VI developer

unless explicit actions are performed.

• Error Information: Syntax error information in

IDEs is given by visual cues like red squiggles

[Figure 1], which are not available to VI developers

pro-actively.

These accessibility challenges result in a huge barrier for VI

developers in exploiting the power of IDEs. Although one

can bundle all these limitations and attribute them to the fact

that sighted developers can either point-click or scroll-click

while VI developers cannot, the above grouping helps us

devise expedient alternates using a structured approach. We

also note that these groupings helped organize our

understanding of accessibility challenges and are not meant

to be water tight compartments. In the next section we

describe CodeTalk, our vehicle for addressing the above

challenges.

CODETALK

CodeTalk is implemented as a Visual Studio plugin.

CodeTalk works with Visual Studio versions 2015/2017 and

supports C# and Python programming languages at the time

of writing this paper. However, implementing support for

newer languages is straightforward. We have chosen to

implement CodeTalk as a Visual Studio plugin mainly due

to the following reasons:

1. Visual Studio provides APIs that allows us to tap into all

the IDE’s features.

2. Visual Studio’s increasing support for a variety of

programming languages.

3. Free availability of Visual Studio community edition.

4. Visual Studio is the most popular IDE among

developers [11].

In CodeTalk, we address the accessibility challenges catego-

rized in the previous section by focusing on the root cause of

the issues: Screen reader based access to information is user

driven, unlike the use of a GUI by a sighted user. The user

must actively seek out information from various components

of the IDE. And since the information access with a screen

reader is dependent on cursor focus, the user must explicitly

set focus on the appropriate pane. In some situations, the VI

developer might not be aware of the presence of a pane

containing the information they are looking for. Our

approach is to minimize the effort of the VI developer

actively seeking information by proactive extraction and

presentation of information or by introducing an audio

channel distinct from the screen reader. CodeTalk extracts

the information relevant to the context and makes it

accessible to the developer with reduced effort. To this

effect, we introduce new customizable keyboard shortcuts as

shown in Table 1. We present below a few of the features of

CodeTalk in detail.

Code Summary and Functions List

One of the first things a developer would want to do after

opening a new code file is to understand its structure. Which

file is this? What are the classes in this file? What are the

functions in each class? VI developers get this information

using standard navigation techniques like searching by name

when known or by reading code one line at a time. In

CodeTalk, we introduce a code summary feature. Using this,

developers get an accessible tree view [Figure 2] containing

the details about the namespaces, classes, and functions in

the file. The developer3 can explore the tree view and get an

overall understanding of the code structure. Additionally,

they can also navigate to the desired code component by

pressing the enter key. The code summary feature helps VI

developers get a “glance” of the different code constructs in

the file.

We realized that one of the major constructs all developers

frequently interact with are functions in a code file. To enable

quick glanceability and navigability across functions in a

file, we introduce a functions list view [Figure 3] that

displays an accessible list view of all the functions in the

current code file. Both the code summary and the functions

list feature enable code glanceability and quick navigation of

code.

Get Context of Current Line

Another important observation we made was that focus can

move across lines or even code files while debugging or

jumping to function definitions or usages. In these scenarios,

a VI developer might be interested to know the context of the

current line of code, at which the cursor is placed. Keeping

3 From here on, by mentioning developer we mean VI

developer, unless explicitly stated otherwise.

this in mind, we introduce a feature that displays an

accessible list view of the context hierarchy containing the

enclosing block, function, class, and namespace that the

current line of code belongs to.

Real-time Error Information

Most IDEs represent syntax errors in code via syntax

coloring. In Visual Studio, this is done via red squiggles

[Figure 1]. We bring this visual information to VI developers

via pro-active error tones informing the developer about

syntax errors. Developers can then press a keyboard shortcut

to get an accessible list of errors.

Figure 2. Code Summary containing tree view of code

constructs

Figure 3. List of functions in the current code file.

Audio Debugging with TalkPoints

Debuggers are highly effective tools that assist developers in

identifying bugs in their code. However, using debugger

tools is not a very accessible experience and VI developers

prefer printing console messages for debugging instead of

using a proper debugging tool [9]. While “printf debugging”

can get the job done for small projects, the process gets very

cumbersome for larger projects. It also creates code clutter

that can lead to potential security vulnerabilities if not

cleaned up later. There have been tools like WAD [18] and

Sodbeans [19] that explore audio for debugging source code.

WAD, for instance, focuses on conveying the execution flow

to the user. Though this is a very important piece of

information, developers often need to know this piece of

information with respect to very small parts of the code. We

propose a novel approach to audio debugging which (I) gives

developers the option to choose between speech and non-

speech based debugging and (II) gives developers

information about specific variables or evaluates an

expression in the execution context. (III) gives an option to

break or continue execution after the audio cue. We have

conceptualized and implemented three types of TalkPoints:

Message Talkpoints, Tone Talkpoints and Expression

Talkpoints.

Feature Keyboard Command

Code summary Control + ~, Control + m

Functions list Control + ~, Control + f

Get context Control + ~, Control + g

Move to context Control + ~, Control + j

Error information Control + ~, Control + e

TalkPoints Control + ~, Control + b

Table 1. CodeTalk keyboard shortcuts.

Steps to add a TalkPoint are as follows:

1. Invoke add TalkPoint dialog, from the desired cursor

position by pressing a key combination. [Table 1]

2. Select the TalkPoint type.

3. Choose whether to pause or continue execution using the

continue checkbox.

4. Activate the TalkPoint using the add button.

Message TalkPoints

Message TalkPoints are similar to adding trace statements.

However, one small yet significant differentiating factor is

that “Message TalkPoints” speak out the message set by the

developer when they are hit without the developer having to

explicitly switch focus and search in the trace window.

Tone TalkPoints

Our rationale behind proposing and implementing Tone

TalkPoints was that developers often only need to know the

execution path of the program. For instance, the developer

might want to know whether the execution entered an if, else

or a catch block. The developer can accomplish this by

setting a tone TalkPoint (at say, the entry of the block) and

selecting a tone to be played when the TalkPoint is hit.

Expression TalkPoints

In many situations, developers are interested to know the

value of a variable with respect to the execution context.

With Expression TalkPoints, we give developers the ability

to have values of specific variables spoken to them when

these TalkPoints are hit. Assume the user wants to insert an

expression in the following code:

int[] array = { 1, 2, 3, 4, 5, 6, 7, 8 };
int count = 0;
for (int i = 0; i < array.Length(); i++)
{
 count = count + array[i];
 //do something here.
}

Let us say the developer wants to track the value of the

variable “count”. They can simply insert an Expression

TalkPoint at line 5 as “value of count is:” + count. When the

program is executed, the expression is run in the current

breakpoint context, and the result is spoken to the developer.

In the above case it will be: “value of count is 0”, “value of

count is 1”, etc.

CodeTalk Design

CodeTalk’s design is both modular and extensible. Even

though the current implementation is for Visual Studio IDE,

CodeTalk can be easily implemented for other IDEs and

even other languages. CodeTalk mainly consists of the

following components.

• Keyboard manager

• Command objects

• Plugin outputs

• Language service and language specific

implementations

Keyboard manager: This is responsible for capturing

keyboard shortcuts, validating them and relaying it to the

appropriate command objects

Command objects: These objects encapsulate the end to end

functionality for a specific user command and send the

output to the appropriate output block.

Plugin output: This module handles outputs from the

command object. The output can be of various forms:

• Dialogs: IDE dialogs containing output entities in a list

or tree view. For instance, function list command gives

a dialog containing list view of all the functions.

• Editor modifications: Moving the cursor to a specific

line in the code file. For instance, move to context

command moves the cursor to the beginning of the

context block.

• Audio: Synthesized audio sent to the default system

audio output using Speech Synthesis APIs.

Language service and language specific implementations:

At the heart of CodeTalk design is the Language service

component. This component defines interfaces for

understanding code which are invoked by command objects

to provide CodeTalk functionality. Language-specific

implementations implement these interfaces to add support

for the corresponding language.

The C# implementation in CodeTalk leverages the Roslyn

APIs [5] to implement the Language service interfaces. For

Python implementation, CodeTalk uses IronPython APIs [3].

For functionalities that require keyboard shortcuts, we chose

user-customizable key commands like those provided by

Visual Studio.

Bootstrapping CodeTalk

One of our authors, B, has been implementing and using

CodeTalk since its initial implementations. This exercise

helped us evolve CodeTalk’s feature set based on the

author’s needs. Also, the initial user survey was a reference

to us to ensure that the features we implement would help a

larger audience.

Author B was already familiar with using an IDE and was

encouraged by the improvement in productivity due to

CodeTalk right from the first set of features implemented:

“functions list view” and “code summary”. The author used

the plugin for their development and perceived significant

benefit while trying to make sense of code written by other

members of the project.

The next set of features implemented were “get context”,

“move to context”, and “error information”. The “get

context” and “move to context” features helped B quickly

understand and navigate classes. Though a reasonably

experienced programmer, B was relatively new to the C#

programming language. Prior to implementing the error list

and real-time error information features, the author had to fix

syntax issues only by building the project. This build and fix

approach was a major productivity hiccup for B, as the

project took minutes to build and syntax errors were not

available until the build completed. B observed a significant

improvement in productivity due to the error list and real-

time error information features as it didn’t require explicitly

building the project; Another major observation was that

compiler error messages were easier to understand if

attended to immediately as opposed to building after

accumulating a few of them. Prior to implementing

TalkPoints, the author B was very reluctant to use a

debugger, often resorting to printf debugging. There were

several occasions when B received code review comments

asking for the removal of printf/log statements.

To verify if our approaches helped more developers, we

performed an exploratory user study with 6 VI developers

proficient with coding. We excluded novice programmers

and those learning to program from this study since our

current focus is not on discoverability, but to improve the

productivity of already competent VI developers.

EXPLORATORY USER STUDY

We conducted an exploratory study with an objective of

getting feedback from active Visual Studio programmers to

validate the direction we were taking and to get a preliminary

idea of the utility of CodeTalk’s features. As mentioned in

the conclusion, a rigorous study is needed to identify the

strengths and drawbacks of our approach. The study had four

major components: Participant solicitation, user study

without and with CodeTalk, and post user study online

survey.

Participant solicitation

We circulated a short online survey to get basic information

of interested participants. We wanted participants who code

in C# or Python using Microsoft’s Visual Studio 2015 and

above.

We selected 6 participants who were reasonably experienced

with writing code in C# and using Visual Studio. All the

participants opted in to the study by sharing their email

address and signed a consent form regarding our terms of

study.

Setup for the Study

Since the study was conducted remotely, we setup a remote

Virtual Machine (VM) on Microsoft’s Azure platform, to

observe the participants. The VM had the NVDA screen

reader installed. To ensure that developers were comfortable

with our screen reader setup, we allowed them to connect to

the VM a few hours in advance of the scheduled study time.

Developers were also allowed to install any screen reader

plugins and configure the screen reader to match their

preferences. Most participants using NVDA preferred to

connect using the NVDA Remote add-on. However, we

requested participants to switch to Microsoft’s remote

desktop to perform tasks 3, 4, and 5 of phase 2 as the NVDA

Remote add-on does not pass through system audio.

Switching to a remote desktop did not result in any change

in screen reader behavior.

JAWS users, however could not use the remote VM as

JAWS does not allow activations on Virtual Machines even

with the remote desktop add-on. We allowed participants

using JAWS to connect to a physical machine via JAWS

Tandem or remote desktop.

Participants connected with us over a Skype audio call and

shared their screen with us. This helped us observe user

behavior. We recorded participant’s microphone audio, our

microphone audio and their screen’s video for our

observation and further analysis.

Phase 1: Performing programming tasks without
CodeTalk

In this phase, participants were asked to perform five

programming tasks using Visual Studio without the

CodeTalk plugin installed. The aim of this phase was to

establish a baseline for how each participant used the IDE.

This phase also helped us better introduce our problem and

plugin to the participant. Before performing the tasks, we

asked participants about the general issues they faced as a VI

developer when using IDEs.

The programming tasks we chose did not require developers

to switch between multiple files. The participants performed

the following tasks.

1. Describe the hierarchical structure of a code file

(namespace, classes, and methods) in a project.

2. Go to a specified line in a code file using Visual Studio’s

go to line function and describe the enclosing context

(enclosing method, class, and namespace information)

with respect to the current line.

3. Open a code file containing syntax errors and fix them.

4. Identify if running a project results in the control

entering a catch block. Participants were not allowed to

modify the code unless they were unable to perform the

task without modifying the code.

5. Find the value of a variable after the ith of a loop without

modifying the code. The loop read data from a file and

participants were not allowed to look at the file.

Participants were allowed to modify the code if they

were unable to perform the task.

Phase 2: Performing programming tasks with CodeTalk
Installed

On completion of phase 1, we introduced participants to

CodeTalk, our accessibility plugin for Visual Studio.

Participants were allowed to explore the plugin after the

walk-through and we ensured they could quickly lookup

CodeTalk keyboard shortcuts if required. Participants were

given the same tasks as in the previous phase albeit with

different code files. We did not make the use of CodeTalk

mandatory for this phase. The participants could choose to

use CodeTalk if they wanted to. We wanted to observe the

developers’ behavior given the tool. After the tasks, we

asked the developers four questions.

1. How was your experience in doing the with and without

CodeTalk?

2. Was there any more information you wish you had while

doing these tasks?

3. How often do you encounter these tasks in your day to

day programming?

4. Did CodeTalk help in solving the given tasks?

After these questions, the participants were asked to give

general feedback on the plugin and the user study. Towards

the end of the call, we asked participants to fill a short online

survey4.

Participant demographics

We had a total of six participants in the exploratory study.

All participants have been coding for more than a year. Two

of them have been programming for about 3-5 years, one for

about 5-10 years and two for more than 10 years [Table 2].

All participants were male and completely blind. Five of the

participants reported they have been using a computer for

more than10 years. Participants were from the United States,

4 We asked for their email ID in the survey for compensating

them later and mentioned this in the survey.

United Kingdom, Spain, India and Romania. All participants

were familiar with C#.

Observations from the User Studies

[Table 3] shows the average rating for our plugin’s features.

Participants were asked to rate the plugin’s features on a

scale of 10 (1 being not useful and 10 being extremely

useful). CodeTalk’s utility was rated on average 8.83 by the

participants. We also describe our observations on

participant’s IDE usage while performing tasks in both

phases.

Participant Programming Experience

P1 1 – 2 years

P2 3 – 5 years

P3 3 – 5 years

P4 Above 10 years

P5 5 – 10 years

P6 Above 10 years

Table 2. Participant Demographics

Feature
Average Rating

(on a scale of 10)

Navigability features

(Code summary, Get context,

Function list, etc.)

8.83

Real time error information

(Pro-active error beeps and

Error list)

8.33

Audio debugging

(Tonal, Textual and Expression

TalkPoints)

8.5

Table 3. Participant ratings of CodeTalk features.

Task 1: Reporting code summary

In the first phase, three out of the six participants navigated

through code one line at a time to give us the summary. P3,

P4 and P6 used an IDE feature to navigate through different

classes and functions of the file. P4 and P6 had developed

their own navigation techniques using some of Visual

Studio’s features. P4 first navigated to the beginning of the

namespace and then to the end. He followed a similar

approach for all the blocks. However, this technique

involved navigating through code one line at a time. P6, on

the other hand, navigated by first folding the code and then

navigating through the folded code. In phase 2 however, all

participants preferred to use CodeTalk’s code summary

feature to report the summary. All participants except P2

mentioned that this is especially useful to quickly understand

large code files and code written by other developers. P2

however accepted that they work on their own code most of

the time and so would not need to get the summary of code.

However, they accepted that “code summary” feature could

come in handy in situations where they must read code

written by others. P3, who used the IDE’s feature to get the

structure of code still preferred to use CodeTalk. “Using this

code summary does not require me to move focus away from

my IDE; I know that pressing enter or escape on the dialog

box will get me back to the file I was working on.” was P3’s

feedback on completing task 1. P4 commented: “Having a

keyboard shortcut to get the tree structure, is very nice. It is

just there. I do not have to use my methods anymore. This is

better as it is right there and gives me just the summary.”

Task 2: Report context of a specific line

In this task, participants were asked to go to a line using

Visual Studio’s “go to” line feature. Participants were then

asked to report the context (enclosing function, classes and

namespaces) that the line belongs to. Three out of the six

participants preferred to navigate through the code one line

at a time. The code had a nested class. Which was not

discovered by three out of the six participants as they had

moved all the way to the top of the file to report the

namespace after finding one of the class’s declaration

statements. In phase 2 however, all participants chose to use

CodeTalk’s get context feature to complete the task. They

mentioned that this feature would come in handy specially

when they want to debug or when they are taken to a line of

code by the IDE due to a breakpoint or exception.

Task 3: Fix syntax errors and build

In this task, developers were given code that had syntax

errors. Participants had to fix the errors and then build the

project. The initial action of all the participants excluding P2

was to try and read the code. Then, all participants except P2

built the project to check for syntax errors. P2 used other IDE

features to fix the errors. In phase 2, all participants except

P2 preferred to use CodeTalk’s Error information features as

it did not require building the project explicitly.

Task 4: Report whether the catch block is executed

In this task, developers were given a code file with a try and

a catch block and were asked whether the catch block be

executed if the code is run. The initial constraint for this task

was that the participants could not modify code. The

rationale behind putting this constraint is to examine if the

participants were familiar with breakpoints. Three out of the

six participants could not perform this task without

modifying code; they mentioned that they did not find

debuggers accessible, did not use breakpoints and had to

resort to “printf debugging”. Participants could report the

answer to us once we allowed them to modify code. In Phase

2, Participants were able to perform this task very easily and

they chose to make use of CodeTalk’s Tone TalkPoints to

identify whether the catch block was executed. “I like the

idea of breakpoints not breaking, and simply continuing after

playing the audio.”, exclaimed participant P2.

Task 5: Find value of a variable at runtime

In this task, participants were given code that iterates over a

list of numbers in a for loop and adds them to a variable

“sum”. They were asked to report the value of the variable

“sum” after the ith iteration. The numbers were populated

from file which the participants didn’t have access to. To

perform this task, participants had two major constraints:

• Participants cannot modify code.

• Participants cannot read the file from which the values

are loaded.

All participants except P1 could complete this task in both

phases. In the first phase, four out of the six participants

could not do it without modifying code. When allowed to

modify code, three out of these four participants reported the

value by adding console statements. One participant, P1,

could not finish the task in both phases. In the second phase

four of the five participants who finished the task used Tone

TalkPoints (4.4.2) whereas one participant, P5, used a

combination of a Tone TalkPoint and Visual Studio’s locals

window to check for variable values.

Participants responded positively when they were asked

whether they encountered these tasks as a part of their day to

day programming. P2 however, did mention that they did not

encounter task one (reporting the summary of the code)

frequently as they mostly work on their own code, but also

said “this is definitely useful for situations where I have to

look at other people’s code”. “Yes, I find myself doing these

things quite frequently, during my assignments” was P3’s

feedback.

Participants were asked about their experience about the

plugin and the user study in general. “I never knew how much

information I was not getting because I was using a screen

reader. I had no clue sighted users had this much

information available.” said P1. P1 also mentioned that they

had difficulty in sorting through code in the post user study

survey. “I have difficulty to sort through code. Perhaps this

is due to my vision impairment and not really an accessibility

issue” said P1. It was a surprising observation for us that VI

developers blamed themselves for these hindrances and did

not view them as deficiencies in the accessibility of the tool.

DISCUSSION

We believe that stepping back and looking at the nature of

accessibility challenges in the use of IDEs has been very

fruitful. The organization of these into four categories,

discoverability, glanceability, navigability and alertability,

has given us a structure to classify specific problems and to

solve them using the accumulated tools built to solve earlier

problems. In implementing CodeTalk we identified two key

ideas to help address these problems: the first is to extract

relevant information from the IDE that is spread around

visually and present them directly in summary form to the VI

developer. The second is to present additional information

through a secondary audio channel distinct from the screen

reader. A combination of these two ideas have been used to

address a subset of the identified challenges in the current

version of CodeTalk. However, this systematic framework

has opened numerous possibilities for future research that we

outline below.

The notion of TalkPoints has tremendous promise, not just

for VI developers, but even for sighted users. The

introduction of the auxiliary audio channel opens an

additional bandwidth for the users. In particular, Expression

TalkPoints have the potential to monitor and announce subtle

inter relations between functions and can be a powerful

debugging tool.

Promising initial user feedback shows that our approach and

CodeTalk have a positive impact on VI developers’

productivity. It has also given us considerable feedback and

additional insights which we intend to build on. However,

we need to explore evaluation metrics for the effectiveness

of these solutions and conduct more systematic user studies.

How can we say CodeTalk has enhanced productivity? Do

we measure the time taken to accomplish individual tasks

with and without CodeTalk? Or since VI developers using

IDEs depend extensively on keyboard shortcuts, should we

measure this improvement by logging keystrokes? Do we

just compare VI developers with and without CodeTalk or

compare VI developers with sighted users since the goal of

such accessibility work is to bridge the gap between the two?

These are some of the many interesting questions that we

have begun to grapple with in evaluating CodeTalk.

We also want focus on a broad class of issues that fall under

discoverability. Currently, getting started with Visual Studio

and similar IDEs requires significant hand-holding from

sighted peers. Discoverability issues are a major reason for

author A not switching to an IDE. Even experienced VI

developers who have used an IDE for a long time are

frequently surprised by new features they stumble upon

accidentally. Given the complexity of modern IDEs, it is not

practical to go through each one of the menu items or to

exhaustively read the user manual to discover all the features.

In addition, this is rarely useful for a novice programmer and

unproductive for experienced users. We need to devise new

techniques that can gently induce the user to discover

features when it is most useful. Such discoverability, even

for sighted users, is still a challenge and it is a wide-open

area of research.

Control of navigation granularity is a very widely used

feature by screen reader users. Web navigation is generally

through different HTML elements like headings, form

controls, links etc. We would like to explore similar granular

navigation techniques specific to code especially for easy

navigation through classes, functions and inner code blocks.

Our choice of implementing CodeTalk as a plugin allows us

to build these solutions in a manner that can easily be ported

5 http://github.com/Microsoft/CodeTalk

across IDEs. We have open sourced our implementation to

facilitate further rapid development and research5.

Additionally, from user feedback, there is a need for

CodeTalk to support more popular scripting languages like

JavaScript.

CONCLUSION

We grouped the numerous accessibility challenges faced by

VI developers in using GUI based programming

environments into four categories, namely, discoverability,

glanceability, navigability and alertability. We presented

CodeTalk, a plugin for Visual Studio that enables VI

developers to overcome some of these challenges.

Participants in the exploratory user study have given very

positive feedback on the utility and potential of CodeTalk to

improve accessibility. We also presented several possible

research directions that emerge from this work.

ACKNOWLEDGEMENTS

We thank Indrani Medhi, Saqib Shaikh and Sujeath Pareddy

for insightful discussions and suggestions.

REFERENCES

1. Vidhya Y. 2017. Preliminary Survey Responses.

Supplementary material - SurveyResponses.pdf.

(2017).

2. Catherine M Baker, Lauren R Milne, and Richard E

Ladner. 2015. Structjumper: A tool to help blind

programmers navigate and understand the structure of

code. In Proceedings of the 33rd Annual ACM

Conference on Human Factors in Computing Systems.

ACM, 3043–3052.

3. IronPython Community. 2017. IronPython. Retrieved

September 19, 2017 from http://ironpython.net/.

4. Microsoft Corporation. 2017. Microsoft Visual Studio.

Retrieved September 19, 2017 from

http://www.visualstudio.com.

5. .Net Foundation. 2017a. Roslyn. Retrieved September

19, 2017 from https://github.com/dotnet/roslyn.

6. The Eclipse Foundation. 2017b. Eclipse. Retrieved

September 19, 2017 https://eclipse.org/.

7. Apple INC. 2017. XCode. Retrieved September 19,

2017 from https://developer.apple.com/xcode/.

8. Shaun K Kane and Jeffrey P Bigham. 2014. Tracking@

stemxcomet: teaching programming to blind students

via 3D printing, crisis management, and twitter. In

Proceedings of the 45th ACM technical symposium on

Computer science education. ACM, 247–252.

9. Sean Mealin and Emerson Murphy-Hill. 2012. An

exploratory study of blind software developers. In

http://github.com/Microsoft/CodeTalk
http://ironpython.net/
http://www.visualstudio.com/
https://github.com/dotnet/roslyn
https://eclipse.org/
https://developer.apple.com/xcode/

Visual Languages and Human-Centric Computing

(VL/HCC), 2012 IEEE Symposium on. IEEE, 71–74.

10. U.S. Bureau of Labor Statistics. 2016. Software

Developers: Occupational Outlook Handbook: U.S.

bureau of Labor Statistics. Retrieved September 19,

2017 from https://www.bls.gov/ooh/computer-and-

information-technology/software-developers.htm.

11. Stack Overflow. 2017. Stack Overflow Developer

Survey 2017. Retrieved September 19, 2017 from

https://insights.stackoverflow.com/survey/2017.

12. Charles B Owen, Sarah Coburn, and J Castor. 2014.

Teaching Modern Object-Oriented Programming to the

Blind: An Instructor and Student Experience. In ASEE

Annual Conference.

13. Guillaume Pothier, Éric Tanter, and José Piquer. 2007.

Scalable omniscient debugging. ACM SIGPLAN

Notices 42, 10 (2007), 535–552.

14. TV Raman. 1996. Emacspeak-A Speech Interface. In

Proceedings of the SIGCHI conference on Human

factors in computing systems. ACM, 66–71.

15. Reddit. 2017. Can I still be a Computer Scientist if I’m

Blind?: cscareerquestions. Retrieved September 19,

2017

https://www.reddit.com/r/cscareerquestions/comments/

3e844q/can_i_still_be_a_computer_scientist_if_im_bli

nd/.

16. Dominic Roberts and Karlton Weaver. 2011. Audio

Aids in Source Code. Retrieved September 19, 2017

from

http://archive2.cra.org/Activities/craw_archive/dmp/aw

ards/2011/Roberts/FinalPaper.pdf.

17. Jaime Sanchez and Fernando Aguayo. 2004. Listen

what I do: blind learners programming through audio.

Memorias TISE (2004), 120–124.

18. Andreas Stefik, Roger Alexander, Robert Patterson,

and Jonathan Brown. 2007. WAD: A feasibility study

using the wicked audio debugger. In Program

Comprehension, 2007. ICPC’07. 15th IEEE

International Conference on. IEEE, 69–80.

19. Andreas Stefik, Andrew Haywood, Shahzada Mansoor,

Brock Dunda, and Daniel Garcia. 2009. Sodbeans. In

Program Comprehension, 2009. ICPC’09. IEEE 17th

International Conference on. IEEE, 293–294.

20. Andreas M Stefik, Christopher Hundhausen, and

Derrick Smith. 2011. On the design of an educational

infrastructure for the blind and visually impaired in

computer science. In Proceedings of the 42nd ACM

technical symposium on Computer science education.

ACM, 571–576.

21. U.S. Bureau of Labor Statistics. 2016. Economic News

Release: Table 3. Employed persons by disability

status, occupation, and sex, 2016 annual averages.

Retrieved September 19, 2017 from

https://www.bls.gov/news.release/disabl.t03.htm.

22. Ann C Smith, Justin S Cook, Joan M Francioni, Asif

Hossain, Mohd Anwar, and M Fayezur Rahman. 2004.

Nonvisual tool for navigating hierarchical structures. In

ACM SIGACCESS Accessibility and Computing. ACM,

133–139.

https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://insights.stackoverflow.com/survey/2017
https://www.reddit.com/r/cscareerquestions/comments/3e844q/can_i_still_be_a_computer_scientist_if_im_blind/
https://www.reddit.com/r/cscareerquestions/comments/3e844q/can_i_still_be_a_computer_scientist_if_im_blind/
https://www.reddit.com/r/cscareerquestions/comments/3e844q/can_i_still_be_a_computer_scientist_if_im_blind/
http://archive2.cra.org/Activities/craw_archive/dmp/awards/2011/Roberts/FinalPaper.pdf
http://archive2.cra.org/Activities/craw_archive/dmp/awards/2011/Roberts/FinalPaper.pdf
https://www.bls.gov/news.release/disabl.t03.htm

